13.已知函數(shù)f(x)=x2-x-2,x∈[-3,3],在定義域內(nèi)任取一點x0,使f(x0)≤0的概率是( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{1}{6}$

分析 先解不等式f(x0)≤0,得能使事件f(x0)≤0發(fā)生的x0的取值長度為3,再由x0的可能取值,長度為定義域長度6,得事件f(x0)≤0發(fā)生的概率.

解答 解:∵f(x0)≤0,
∴x02-x0-2≤0,
∴-1≤x0≤2,即x0∈[-1,2],
∵在定義域內(nèi)任取一點x0,
∴x0∈[-3,3],
∴使f(x0)≤0的概率P=$\frac{2+1}{3+3}$=$\frac{1}{2}$.
故選:C.

點評 本題考查了幾何概型的意義和求法,將此類概率轉(zhuǎn)化為長度、面積、體積等之比,是解決問題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

1.已知A、B為雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左右頂點,F(xiàn)1,F(xiàn)2為其左右焦點,雙曲線的漸近線上一點P(x0,y0)(x0<0,y0>0),滿足$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$=0,且∠PBF1=45°,則雙曲線的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{5}+1}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.若二次函數(shù)f(x)=ax2+bx+c(a≤b)的值域為[0,+∞),則$\frac{b-a}{a+b+c}$的最大值是$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知函數(shù)f(x)=cos$\frac{1}{2}$x的圖象向右平移π個單位得到函數(shù)y=g(x)的圖象,則g($\frac{π}{3}$)=( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖,在長方體ABCD-A1B1C1D1中,AB=8,BC=5,AA1=4,平面α截長方體得到一個矩形EFGH,且A1E=D1F=2,AH=DG=5.
(1)求截面EFGH把該長方體分成的兩部分體積之比;
(2)求直線AF與平面α所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在平面直角坐標系xOy中,M,N是x軸上的動點,且|OM|2+|ON|2=8,過點M,N分別作斜率為$\frac{{\sqrt{3}}}{2},-\frac{{\sqrt{3}}}{2}$的兩條直線交于點P,設點P的軌跡為曲線E.
(Ⅰ)求曲線E的方程;
(Ⅱ)過點Q(1,1)的兩條直線分別交曲線E于點A,C和B,D,且AB∥CD,求證直線AB的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.在四棱錐P-ABCD中,PA⊥AD,PA=1,PC=PD,底面ABCD是梯形,AB∥CD,AB⊥BC,AB=BC=1,CD=2.
(1)求證:PA⊥AB;
(2)設M為PD的中點,求三棱錐M-PAB的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.城市發(fā)展面臨生活垃圾產(chǎn)生量逐年劇增的困擾,為了建設宜居城市,2017年1月,某市制定《生活垃圾分類和減量工作方案》,到2020年,生活垃圾無害化處理率達到100%.如圖是該市2011~2016年生活垃圾年產(chǎn)生量(單位:萬噸)的柱狀圖;如表是2016年年初與年末對該市四個社區(qū)各隨機抽取1000人調(diào)查參與垃圾分類人數(shù)的統(tǒng)計表:

2016年初2016年末
社區(qū)A539568
社區(qū)B543585
社區(qū)C568600
社區(qū)D496513
注1:年份代碼1~6分別對應年份2011~2016
注2:參與度=$\frac{參加垃圾分類人數(shù)}{調(diào)查人數(shù)}$×100%
參與度的年增加值=年末參與度-年初參與度
(1)由圖可看出,該市年垃圾生產(chǎn)量y與年份代碼t之間具有較強的線性相關(guān)關(guān)系,運用最小二乘法可得回歸直線方程為$\widehat{y}$=14.8t+$\widehat{a}$,預測2020年該年生活垃圾的產(chǎn)生量;
(2)已知2016年該市生活在垃圾無害化化年處理量為120萬噸,且全市參與度每提高一個百分點,都可使該市的生活垃圾無害化處理量增加6萬噸,用樣本估計總體的思想解決以下問題:
①由表的數(shù)據(jù)估計2016年該市參與度的年增加值,假設2017年該市參與度的年增加值與2016年大致相同,預測2017年全市生活垃圾無害化處理量;
②在2017年的基礎上,若2018年至2020年的參與度逐年增加5個百分點,則到2020年該市能否實現(xiàn)生活垃圾無害化處理率達到100%的目標?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知f(x)=|2x+3|-|2x-1|.
(Ⅰ)求不等式f(x)<2的解集;
(Ⅱ)若存在x∈R,使得f(x)>|3a-2|成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案