(本小題滿分12分)
如圖,在三棱錐中,面,是正三角形,

(Ⅰ)求證:;
(Ⅱ)若異面直線所成角的余弦值為,求二面角的大;
(Ⅰ)證明見解析
(Ⅱ)二面角的大小為
本試題主要是考查了線線垂直的證明,以及二面角的平面角的求解的綜合運(yùn)用。
(1)利用先棉農(nóng)垂直的性質(zhì)定理得到線線垂直的證明即可。
(2)建立空間直角坐標(biāo)系,然后表示出平面的法向量和法向量的夾角,即為二面角的平面角的求解。
解:(Ⅰ)證明:∵ 面⊥面,且面,

又∵ ,
.                                ………6分
(Ⅱ)取的中點(diǎn),連接,則,有,以為原點(diǎn)建立坐標(biāo)系如圖所示.

設(shè),,則有
,根據(jù)已知
,即,解得
根據(jù),
可得平面的法向量,
而平面的法向量,于是

因此,二面角的大小為.          ………12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,幾何體是四棱錐,△為正三角形,.
(1)求證:
(2)若∠,M為線段AE的中點(diǎn),求證:∥平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分16分)
如圖,直三棱柱ABC-A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分別是A1B1,A1A的中點(diǎn).

(1)求的長;
(2)求的值;
(3)求證:A1BC1M(14分).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)如圖,在三棱柱中,側(cè)面底面,,,且中點(diǎn).

(I)證明:平面;
(II)求直線與平面所成角的正弦值;
(III)在上是否存在一點(diǎn),使得平面,若不存在,說明理由;若存在,確定點(diǎn)的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐P—ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,PA=AB=4,
 
G為PD中點(diǎn),E點(diǎn)在AB上,平面PEC⊥平面PDC.
(Ⅰ)求證:AG⊥平面PCD;
(Ⅱ)求證:AG∥平面PEC;
(Ⅲ)求點(diǎn)G到平面PEC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在長方體中,分別是的中點(diǎn),
的中點(diǎn),

(Ⅰ)求證:
(Ⅱ)求二面角的大小。
(Ⅲ)求三棱錐的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
在直三棱柱中,中點(diǎn).

(1)求證://平面;
(2)求點(diǎn)到平面的距離;
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知m,n是兩條直線,α,β是兩個平面.有以下命題:
①m,n相交且都在平面α,β外,m∥α, m∥β , n∥α, n∥β ,則α∥β;
②若m∥α, m∥β , 則α∥β;
③若m∥α, n∥β , m∥n,則α∥β.
其中正確命題的個數(shù)是(     )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè),是兩個不同的平面,是兩條不重合的直線,下列命題中正確的是(  )
A.若,則.
B.若,則.
C.若,且,則.
D.若,,則.

查看答案和解析>>

同步練習(xí)冊答案