20.關于x的不等式ax2+bx-2>0的解集是(-∞,-$\frac{1}{2}}$)∪(${\frac{1}{3}$,+∞),則ab等于24.

分析 根據(jù)不等式與對應的方程之間的關系,結合根與系數(shù)的關系,求出a、b的值,即可計算ab的值

解答 解:∵x的不等式ax2+bx-2>0的解集是(-∞,-$\frac{1}{2}}$)∪(${\frac{1}{3}$,+∞),
∴$-\frac{1}{2}$,$\frac{1}{3}$是一元二次方程ax2+bx-2=0的解且a>0.
∴-$\frac{1}{2}$$+\frac{1}{3}$=-$\frac{a}$,-$\frac{1}{2}$×$\frac{1}{3}$=-$\frac{2}{a}$
解得a=12,b=2.
∴ab=24.
故答案為:24.

點評 本題考查了一元二次不等式的解集與相應的一元二次方程的實數(shù)根的關系,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

10.設函數(shù)f(x)=x2+bln(x+1).
(1)若x=1時,函數(shù)f(x)取極小值,求實數(shù)b的值;
(2)若函數(shù)f(x)在定義域上是單調函數(shù),求實數(shù)b的取值范圍;
(3)若b=-1,證明對任意正整數(shù)n,不等式f(1)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+…+f($\frac{1}{n}$)<1+$\frac{1}{{2}^{3}}$+$\frac{1}{{3}^{3}}$+…+$\frac{1}{{n}^{3}}$都成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.設函數(shù)f(x)=ax2-(2a+1)x+2.
(1)若f(x)>-x-1恒成立,求a的取值范圍;
(2)求不等式f(x)>0的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知sinα=$\frac{5}{13}$,α是第一象限角,則cos(π-α)的值為$-\frac{12}{13}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.給出四個命題:
①若x2-3x+2=0,則x=1或x=2;
②若x=y=0,則x2+y2=0;
③已知x,y∈N,若x+y是奇數(shù),則x,y中一個是奇數(shù),一個偶數(shù);
④若x1,x2是方程x2-2$\sqrt{3}$x+2=0的兩根,則x1,x2可以是一橢圓與一雙曲線的離心率.
那么( 。
A.①的逆命題為真B.②的否命題為假C.③的逆命題為假D.④的逆否命題為假

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.(1+x)4+(1+x)5+…+(1+x)9展開式中,x3項的系數(shù)為209.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.用1、2、3、4、5這5個數(shù)字,組成無重復數(shù)字的三位數(shù),這樣的三位數(shù)有( 。
A.12個B.48個C.60個D.125個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.數(shù)列{an}和{bn}的每一項都是正數(shù),且a1=8,b1=16,且an,bn,an+1成等差數(shù)列,bn,an+1,bn+1成等比數(shù)列.
(Ⅰ)求a2,b2的值;
(Ⅱ)求數(shù)列{an},{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=Asin(ωx+φ) $(A>0,ω>0,|φ|<\frac{π}{2})$的最小正周期為2,且當x=$\frac{1}{3}$時,f(x)取得最大值2.
(1)求函數(shù)f(x)的解析式.
(2)在閉區(qū)間[$\frac{21}{4}$,$\frac{23}{4}$]上是否存在f(x)圖象的對稱軸?如果存在,求出對稱軸方程;如果不存在,說明理由.

查看答案和解析>>

同步練習冊答案