P是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的右支上一點(diǎn),F(xiàn)1,F(xiàn)2分別為雙曲線的左、右焦點(diǎn),焦距為2c,則△PF1F2的內(nèi)切圓的圓心橫坐標(biāo)為( 。
A、-aB、aC、-cD、c
分析:點(diǎn)P是雙曲線右支上一點(diǎn),按雙曲線的定義,|PF1|-|PF2|=2a,設(shè)三角形PF1F2的內(nèi)切圓心在橫軸上的投影為A(x,0),B、C分別為內(nèi)切圓與PF1、PF2的切點(diǎn).由同一點(diǎn)向圓引得兩條切線相等知|PF1|-|PF2|=(PB+BF1)-(PC+CF2),由此得到△PF1F2的內(nèi)切圓的圓心橫坐標(biāo).
解答:解:∵點(diǎn)P是雙曲線右支上一點(diǎn),
∴按雙曲線的定義,|PF1|-|PF2|=2a,
若設(shè)三角形PF1F2的內(nèi)切圓心在橫軸上的投影為A(x,0),該點(diǎn)也是內(nèi)切圓與橫軸的切點(diǎn).
設(shè)B、C分別為內(nèi)切圓與PF1、PF2的切點(diǎn).考慮到同一點(diǎn)向圓引得兩條切線相等:
則有:PF1-PF2=(PB+BF1)-(PC+CF2
=BF1-CF2=AF1-F2A
=(c+x)-(c-x)
=2x=2a
x=a
所以內(nèi)切圓的圓心橫坐標(biāo)為a.
故選B.
點(diǎn)評(píng):本題考查圓錐曲線的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的右支上一點(diǎn),A1,A2分別為雙曲線的左、右頂點(diǎn),F(xiàn)1,F(xiàn)2分別為雙曲線的左、右焦點(diǎn),雙曲線的離心率為e,有下列命題:
①雙曲線的一條準(zhǔn)線被它的兩條漸近線所截得的線段長(zhǎng)度為
2ab
a2+b2
;
②若|PF1|=e|PF2|,則e的最大值為
2
;
③△PF1F2的內(nèi)切圓的圓心橫坐標(biāo)為a;
其中正確命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)點(diǎn)P是雙曲線
x2
a2
-
y2
b2
=1(a>,b>0)
與圓x2+y2=a2+b2在第一象限的交點(diǎn),F(xiàn)1、F2分別是雙曲線的左、右焦點(diǎn),且|PF1|=3|PF2|,則雙曲線的離心率( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A,B,P是雙曲線
x2
a2
-
y2
b2
=1
上不同的三點(diǎn),且A,B連線經(jīng)過(guò)坐標(biāo)原點(diǎn),若直線PA,PB的斜率乘積kPAkPB=
2
3
,則該雙曲線的離心率為
15
3
15
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓與雙曲線之間有許多類(lèi)似的性質(zhì):
P是橢圓
x2
a2
+
y2
b2
=1(a>b>0)上任一點(diǎn),焦點(diǎn)F1、F2,∠F1PF2=α,三角形PF1F2面積為b2
sinα
1+cosα
,類(lèi)比,P是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)上任一點(diǎn),焦點(diǎn)F1、F2,∠F1PF2=α,三角形PF1F2面積為
b2
sinα
1-cosα
b2
sinα
1-cosα

查看答案和解析>>

同步練習(xí)冊(cè)答案