已知|
a
|=2,|
b
|=1,(2
a
-3
b
)•(2
a
+
b
)=9
(1)求
a
b
的夾角θ;       
(2)求|
a
+
b
|的值.
考點:平面向量數(shù)量積的運算
專題:平面向量及應(yīng)用
分析:利用數(shù)量積的運算性質(zhì)即可得出.
解答: 解:(1)由(2
a
-3
b
)•(2
a
+
b
)=9
,
4|
a
|2-4
a
b
-3|
b
|2=9

|
a
|=2,|
b
|=1

代入解得
a
b
=1.
cosθ=
a
b
|
a
||
b
|
=
1
2×1
=
1
2
,
a
b
的夾角θ=
π
3

(2)|
a
+
b
|=
(
a
+
b
)
2
=
|
a
|2+2
a
b
+|
b
|2
=
4+2×1+1
=
7
點評:本題查克拉數(shù)量積的性質(zhì),屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

下列有關(guān)命題的說法正確的是(  )
A、已知集合A={x|x(x-1)=0},則1⊆A
B、“x(x-1)=0”成立的必要不充分條件是“x=1”
C、“若a>b,則ac2>bc2”的逆否命題為真命題
D、若“p∧q”為真命題,則“p∨(¬q)”也為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=
x+1
x-1
在點(2,3)處的切線方程為( 。
A、y=2x-1
B、y=-2x+7
C、y=-2x-1
D、y=2x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一個由三根細棒PA、PB、PC組成的支架,三根細棒PA、PB、PC兩兩所成的角都為
60°,一個半徑為1的小球放在支架上,則球心O到點P的距離是( 。
A、
3
2
B、2
C、
3
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x2<4},B={x|-3≤x≤1},全集U=R.
(1)求集合A∩B;(∁UA)∩B;
(2)若集合B為函數(shù)f(x)=2x的定義域,求函數(shù)f(x)=2x的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},其中a1=2,an-an-1=2n-1(n≥2,n∈N*
(1)求{an}的通項公式;
(2)若數(shù)列bn=2log2an-1,記數(shù)列{
2
bnbn+1
}的前n項和為Sn,求使Sn
9
10
成立的最小正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題p:函數(shù)f(x)=log 
1
3
(x2-mx+3m)是區(qū)間[1,+∞)上的減函數(shù),命題q:函數(shù)f(x)=
4
3
x3-2mx2+(4m-3)x-m在(-∞,+∞)上單調(diào)遞增.若p∧q為假,p∨q為真,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三棱錐S-ABC中,∠SAB=∠SAC=∠ACB=90°,AC=2,BC=
13
,SB=
29

(1)證明:SC⊥BC;
(2)求三棱錐的體積VS-ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個正四棱臺的上、下底面邊長分別為4cm和10cm,高為4cm,求正四棱臺的側(cè)面積和體積.

查看答案和解析>>

同步練習冊答案