(本題滿分18分)第(1)小題滿分4分,第(2)小題滿分6分,第(3)小題滿分8分。

圓錐曲線上任意兩點連成的線段稱為弦。若圓錐曲線上的一條弦垂直于其對稱軸,我們將該弦稱之為曲線的垂軸弦。已知橢圓C:

(1)過橢圓C的右焦點作一條垂直于軸的垂軸弦,求的長度;

(2)若點是橢圓C上不與頂點重合的任意一點,是橢圓C的短軸,直線分別交軸于點和點(如右圖),求的值;

(3)在(2)的基礎上,把上述橢圓C一般化為,是任意一條垂直于軸的垂軸弦,其它條件不變,試探究是否為定值?(不需要證明);請你給出雙曲線中相類似的結(jié)論,并證明你的結(jié)論。

(1)由條件可知右焦點的坐標為           ……………. 1分

代入橢圓C的方程,得     ……………. 3分

所以                    ……………. 4分

(2)設 

         則 ……………. 6分

         令……………. 7分

         同理可得:…………….8分

         在橢圓C:上,

          則……………. 10分

  (3)點是橢圓C:上不與頂點重合的任意一點,是垂直于軸的垂軸弦,直線分別交軸于點和點,則。……… 12分

是雙曲線C:上不與頂點重合的任意一點,是垂直于軸的垂軸弦,直線分別交軸于點和點,則!. 14分

 

 證明如下:設 

         則

          令

         同理可得:, 

         在雙曲線C:上,,

           則……………. 18分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(本題滿分18分,第(1)小題4分,第(2)小題6分,第(3)小題8分)

在平行四邊形中,已知過點的直線與線段分別相交于點。若。

(1)求證:的關系為;

(2)設,定義函數(shù),點列在函數(shù)的圖像上,且數(shù)列是以首項為1,公比為的等比數(shù)列,為原點,令,是否存在點,使得?若存在,請求出點坐標;若不存在,請說明理由。

(3)設函數(shù)上偶函數(shù),當,又函數(shù)圖象關于直線對稱, 當方程上有兩個不同的實數(shù)解時,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:2012屆上海市崇明中學高三第一學期期中考試試題數(shù)學 題型:解答題

(本題滿分18分,第(1)小題4分,第(2)小題6分,第(3)小題8分)
對于數(shù)列,如果存在一個正整數(shù),使得對任意的)都有成立,那么就把這樣一類數(shù)列稱作周期為的周期數(shù)列,的最小值稱作數(shù)列的最小正周期,以下簡稱周期。例如當是周期為的周期數(shù)列,當是周期為的周期數(shù)列。
(1)設數(shù)列滿足),不同時為0),且數(shù)列是周期為的周期數(shù)列,求常數(shù)的值;
(2)設數(shù)列的前項和為,且
①若,試判斷數(shù)列是否為周期數(shù)列,并說明理由;
②若,試判斷數(shù)列是否為周期數(shù)列,并說明理由;
(3)設數(shù)列滿足),,,數(shù)列的前項和為,試問是否存在,使對任意的都有成立,若存在,求出的取值范圍;不存在,   說明理由;

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年上海市高三第一學期期中考試試題數(shù)學 題型:解答題

(本題滿分18分,第(1)小題4分,第(2)小題6分,第(3)小題8分)

對于數(shù)列,如果存在一個正整數(shù),使得對任意的)都有成立,那么就把這樣一類數(shù)列稱作周期為的周期數(shù)列,的最小值稱作數(shù)列的最小正周期,以下簡稱周期。例如當是周期為的周期數(shù)列,當是周期為的周期數(shù)列。

    (1)設數(shù)列滿足),不同時為0),且數(shù)列是周期為的周期數(shù)列,求常數(shù)的值;

    (2)設數(shù)列的前項和為,且

①若,試判斷數(shù)列是否為周期數(shù)列,并說明理由;

②若,試判斷數(shù)列是否為周期數(shù)列,并說明理由;

    (3)設數(shù)列滿足),,,,數(shù)列 的前項和為,試問是否存在,使對任意的都有成立,若存在,求出的取值范圍;不存在,    說明理由;

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年上海市十三校高三上學期第一次聯(lián)考試題文科數(shù)學 題型:解答題

  (本題滿分18分,第1小題滿分5分,第2小題滿分5分,第3小題滿分8分)

已知函數(shù),其中.

(1)當時,設,,求的解析式及定義域;

(2)當時,求的最小值;

(3)設,當時,對任意恒成立,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學卷(文) 題型:解答題

(本題滿分18分;第(1)小題5分,第(2)小題5分,第(3)小題8分)

設數(shù)列是等差數(shù)列,且公差為,若數(shù)列中任意(不同)兩項之和仍是該數(shù)列中的一項,則稱該數(shù)列是“封閉數(shù)列”.

(1)若,求證:該數(shù)列是“封閉數(shù)列”;

(2)試判斷數(shù)列是否是“封閉數(shù)列”,為什么?

(3)設是數(shù)列的前項和,若公差,試問:是否存在這樣的“封閉數(shù)列”,使;若存在,求的通項公式,若不存在,說明理由.

 

查看答案和解析>>

同步練習冊答案