【題目】已知函數(shù)的導函數(shù)為,且對任意的實數(shù)都有(是自然對數(shù)的底數(shù)),且,若關(guān)于的不等式的解集中恰有唯一一個整數(shù),則實數(shù)的取值范圍是( )
A. B. C. D.
【答案】A
【解析】
利用導數(shù)構(gòu)造函數(shù)exf(x)=x2+2.5x+c,求得f(x)=(x2+2.5x+1)e﹣x,再求導研究其單調(diào)性極值與最值并且畫出圖象即可得出.
∵f'(x)=e﹣x(2x+2.5)﹣f(x),
∴ex[f(′x)+f(x)]=2x+2.5,
∴exf(x)=x2+2.5x+c,
∵f(0)=1,∴1=0+0+c,解得c=1
∴f(x)=(x2+2.5x+1)e﹣x,
∴f′(x)=﹣(x2x)e﹣x=﹣(x﹣1)(x)e﹣x.
令f′(x)=0,解得x=1或x,
當x或x>1時,f′(x)<0,函數(shù)f(x)單調(diào)遞減,
當x<1時,f′(x)>0,函數(shù)f(x)單調(diào)遞減增,
可得:x=1時,函數(shù)f(x)取得極大值,x時,函數(shù)f(x)取得極小值,
∵f(﹣2)=0,f(﹣1)e,f(0)=1>0,
∴e<m≤0時,f(x)﹣m<0的解集中恰有唯一一個整數(shù)﹣1.
故m的取值范圍是(e,0],
故選:A.
科目:高中數(shù)學 來源: 題型:
【題目】已知,,直線AD與直線BD相交于點D,直線BD的斜率減去直線AD的斜率的差是2,設(shè)D點的軌跡為曲線C.
求曲線C的方程;
已知直線l過點,且與曲線C交于P,Q兩點Q異于A,,問在y軸上是否存在定點G,使得?若存在,求出點G的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】小李從網(wǎng)上購買了一件商品,快遞員計劃在下午5:00-6:00之間送貨上門,已知小李下班到家的時間為下午5:30-6:00.快遞員到小李家時,如果小李未到家,則快遞員會電話聯(lián)系小李.若小李能在10分鐘之內(nèi)到家,則快遞員等小李回來;否則,就將商品存放在快遞柜中.則小李需要去快遞柜收取商品的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某班級甲、乙兩個小組各有10位同學,在一次期中考試中,兩個小組同學的數(shù)學成績?nèi)缦拢?/span>
甲組:94,69,73,86,74,75,86,88,97,98;
乙組:75,92,82,80,95,81,83,91,79,82.
畫出這兩個小組同學數(shù)學成績的莖葉圖,判斷哪一個小組同學的數(shù)學成績差異較大,并說明理由;
從這兩個小組數(shù)學成績在90分以上的同學中,隨機選取2人在全班介紹學習經(jīng)驗,求選出的2位同學不在同一個小組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】據(jù)說偉大的阿基米德逝世后,敵軍將領(lǐng)馬塞拉斯給他建了一塊墓碑,在墓碑上刻了一個如圖所示的圖案,圖案中球的直徑、圓柱底面的直徑和圓柱的高相等,圓錐的頂點為圓柱上底面的圓心,圓錐的底面是圓柱的下底面.
(1)試計算出圖案中圓柱與球的體積比;
(2)假設(shè)球半徑.試計算出圖案中圓錐的體積和表面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,其上焦點到直線的距離為.
(1)求橢圓的方程;
(2)過點的直線交橢圓于,兩點.試探究以線段為直徑的圓是否過定點?若過,求出定點坐標,若不過,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某同學在生物研究性學習中,對春季晝夜溫差大小與黃豆種子發(fā)芽多少之間的關(guān)系進行研究,于是他在4月份的30天中隨機挑選了5天進行研究,且分別記錄了每天晝夜溫差與每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:
日期 | 4月1日 | 4月7日 | 4月15日 | 4月21日 | 4月30日 |
溫差 | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)/顆 | 23 | 25 | 30 | 26 | 16 |
(1)從這5天中任選2天,求這2天發(fā)芽的種子數(shù)均不小于25的概率;
(2)從這5天中任選2天,若選取的是4月1日與4月30日的兩組數(shù)據(jù),請根據(jù)這5天中的另三天的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
附:回歸直線的斜率和截距的最小二乘估計公式分別為, .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,B1,B2是橢圓的短軸端點,P是橢圓上異于點B1,B2的一動點.當直線PB1的方程為時,線段PB1的長為.
(1)求橢圓的標準方程;
(2)設(shè)點Q滿足:QB1⊥PB1,QB2⊥PB2,求證:△PB1B2與△QB1B2的面積之比為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】三國時期著名的數(shù)學家劉徽對推導特殊數(shù)列的求和公式很感興趣,創(chuàng)造并發(fā)展了許多算法,展現(xiàn)了聰明才智.他在《九章算術(shù)》“盈不足”章的第19題的注文中給出了一個特殊數(shù)列的求和公式.這個題的大意是:一匹良馬和一匹駑馬由長安出發(fā)至齊地,長安與齊地相距3000里(1里=500米),良馬第一天走193里,以后每天比前一天多走13里.駑馬第一天走97里,以后每天比前一天少走半里.良馬先到齊地后,馬上返回長安迎駑馬,問兩匹馬在第幾天相遇( )
A. 14天B. 15天C. 16天D. 17天
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com