【題目】若函數(shù)滿(mǎn)足下列條件:在定義域內(nèi)存在,使得成立,則稱(chēng)函數(shù)具有性質(zhì);反之,若不存在,則稱(chēng)函數(shù)不具有性質(zhì).
(1)已知函數(shù)具有性質(zhì),求出對(duì)應(yīng)的的值;
(2)證明:函數(shù)一定不具有性質(zhì);
(3)下列三個(gè)函數(shù):,,,哪些恒具有性質(zhì),并說(shuō)明理由
【答案】(1)(2)證明見(jiàn)解析;(3)只有恒具有性質(zhì),詳見(jiàn)解析
【解析】
(1)由新定義可知,解指數(shù)方程;
(2)若函數(shù)具有性質(zhì),則,化簡(jiǎn)方程判斷方程是否有解;
(3)要滿(mǎn)足性質(zhì),則在定義域內(nèi)存在,使得成立,分別代入三個(gè)函數(shù)判斷方程是否有解.
(1)具有性質(zhì)所以
即解出即
(2)證明:因?yàn)?/span>化簡(jiǎn)為此方程無(wú)解
所以函數(shù)一定不具有性質(zhì)
(3)函數(shù)恒具有性質(zhì)即關(guān)于的方程恒有解
①關(guān)于的方程為
可簡(jiǎn)化為所以當(dāng)方程無(wú)解
所以函數(shù)不恒具有性質(zhì)
②關(guān)于的方程化簡(jiǎn)為即
所以函數(shù)恒具有性質(zhì)
③關(guān)于的方程為,
化簡(jiǎn)為顯然方程無(wú)解.
所以函數(shù)不具有性質(zhì)
綜上所述三個(gè)函數(shù)中只有恒具有性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給定下列命題:①在中,若則是鈍角三角形;②在中, ,,若,則是直角三角形;③若是的兩個(gè)內(nèi)角,且,則;④若分別是的三個(gè)內(nèi)角所對(duì)邊的長(zhǎng),且,則一定是鈍角三角形.其中真命題的序號(hào)是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,正三棱柱的底面邊長(zhǎng)是2,側(cè)棱長(zhǎng)是,是的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)在線(xiàn)段上是否存在一點(diǎn),使得平面平面?若存在,求出的長(zhǎng);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表為年至年某百貨零售企業(yè)的線(xiàn)下銷(xiāo)售額(單位:萬(wàn)元),其中年份代碼年份.
年份代碼 | ||||
線(xiàn)下銷(xiāo)售額 |
(1)已知與具有線(xiàn)性相關(guān)關(guān)系,求關(guān)于的線(xiàn)性回歸方程,并預(yù)測(cè)年該百貨零售企業(yè)的線(xiàn)下銷(xiāo)售額;
(2)隨著網(wǎng)絡(luò)購(gòu)物的飛速發(fā)展,有不少顧客對(duì)該百貨零售企業(yè)的線(xiàn)下銷(xiāo)售額持續(xù)增長(zhǎng)表示懷疑,某調(diào)查平臺(tái)為了解顧客對(duì)該百貨零售企業(yè)的線(xiàn)下銷(xiāo)售額持續(xù)增長(zhǎng)的看法,隨機(jī)調(diào)查了位男顧客、位女顧客(每位顧客從“持樂(lè)觀(guān)態(tài)度”和“持不樂(lè)觀(guān)態(tài)度”中任選一種),其中對(duì)該百貨零售企業(yè)的線(xiàn)下銷(xiāo)售額持續(xù)增長(zhǎng)持樂(lè)觀(guān)態(tài)度的男顧客有人、女顧客有人,能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為對(duì)該百貨零售企業(yè)的線(xiàn)下銷(xiāo)售額持續(xù)增長(zhǎng)所持的態(tài)度與性別有關(guān)?
參考公式及數(shù)據(jù):
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列的前項(xiàng)和為,且(),設(shè)(),數(shù)列的前項(xiàng)和.
(1)求、、的值;
(2)利用“歸納—猜想—證明”求出的通項(xiàng)公式;
(3)求數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列三個(gè)命題,其中所有錯(cuò)誤命題的序號(hào)是______.
拋物線(xiàn)的準(zhǔn)線(xiàn)方程為;
過(guò)點(diǎn)作與拋物線(xiàn)只有一個(gè)公共點(diǎn)的直線(xiàn)t僅有1條;
是拋物線(xiàn)上一動(dòng)點(diǎn),以P為圓心作與拋物線(xiàn)準(zhǔn)線(xiàn)相切的圓,則這個(gè)圓一定經(jīng)過(guò)一個(gè)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn),是以為底邊的等腰三角形,點(diǎn)在直線(xiàn):上.
(1)求邊上的高所在直線(xiàn)的方程;
(2)求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若關(guān)于的方程在區(qū)間上有解,求實(shí)數(shù)的取值范圍;
(2)若對(duì)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓.
(1)求圓心C的坐標(biāo)及半徑r的大小;
(2)已知不過(guò)原點(diǎn)的直線(xiàn)l與圓C相切,且在x軸、y軸上的截距相等,求直線(xiàn)l的方程;
(3)從圓外一點(diǎn)向圓引一條切線(xiàn),切點(diǎn)為M,O為坐標(biāo)原點(diǎn),且,求點(diǎn)P的軌跡方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com