精英家教網 > 高中數學 > 題目詳情

已知雙曲線的右焦點為,若過點且傾斜角為60°的直線與雙曲線的右支有且只有一個交點,則此雙曲線離心率的取值范圍是(   )

A.(1,2)    B.(-1,2)     C.      D.

 

【答案】

D

【解析】本試題主要是考查了直線與雙曲線的位置關系的運用。

因為已知雙曲線 的右焦點為F,若過點F且傾斜角為60°的直線與雙曲線的右支有且只有一個交點,則該直線的斜率的絕對值小于等于漸近線的斜率,,故此雙曲線離心率的取值范圍是選D.

解決該試題的關鍵是對于直線與雙曲線的右支有且只有一個交點由兩種情況,要不是相切,就是平行與漸近線得到。

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知雙曲線的右焦點為(5,0),一條漸近線方程為2x-y=0,則此雙曲線的標準方程是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

下列結論:
①當a為任意實數時,直線(a-1)x-y+2a+1=0恒過定點P,則過點P且焦點在y軸上的拋物線的標準方程是x2=
4
3
y

②已知雙曲線的右焦點為(5,0),一條漸近線方程為2x-y=0,則雙曲線的標準方程是
x2
5
-
y2
20
=1
;
③拋物線y=ax2(a≠0)的準線方程為y=-
1
4a

④已知雙曲線
x2
4
+
y2
m
=1
,其離心率e∈(1,2),則m的取值范圍是(-12,0).
其中所有正確結論的個數是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知雙曲線的右焦點為F(3,0),且以直線x=1為右準線.求雙曲線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列四個命題,其中所有正確命題的序號為
①②
①②

①當a為任意實數時,直線(a-1)x-y+2a+1=0恒過定點P(-2,3);
②已知雙曲線的右焦點為(5,0),一條漸近線方程為2x-y=0,則雙曲線的標準方程是
x2
5
-
y2
20
=1
;
③拋物線y=ax2(a≠0)的焦點坐標為(
1
4a
,0
);
④曲線C:
x2
4-k
+
y2
k-1
=1
不可能表示橢圓.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知雙曲線的右焦點為F,過F作雙曲線一條漸近線的垂線,垂足為A,過A作x軸的垂線,B為垂足,且
OF
=3
OB
(O為原點),則此雙曲線的離心率為( 。

查看答案和解析>>

同步練習冊答案