4.對(duì)任意實(shí)數(shù)x,不等式x2+x+k>0,則k的取值范圍是{k|k>1}.

分析 不等式x2-2x+k-1>0恒成立,則函數(shù)y=x2-2x+k-1的圖象都在x軸的上方,得到判別式小于0.

解答 解:∵不等式x2-2x+k>0對(duì)一切實(shí)數(shù)x恒成立,
∴△=(-2)2-4k<0,
解得k>1,
故答案為:{k|k>1}.

點(diǎn)評(píng) 本題考查了一元二次不等式恒成立問(wèn)題求參數(shù)范圍;關(guān)鍵是與二次函數(shù)結(jié)合,得到判別式與0的不等式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=x2-2alnx.
(1)求f(x)的極值;
(2)當(dāng)a>0時(shí),函數(shù)g(x)=f(x)-2ax有唯一零點(diǎn),試求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=x•|x|-2x
(Ⅰ)求函數(shù)f(x)=0時(shí)x的值;
(Ⅱ)畫(huà)出y=f(x)的圖象,并結(jié)合圖象寫(xiě)出f(x)=m有三個(gè)不同實(shí)根時(shí),實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知f(n)=$\frac{1}{n}$+$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{{n}^{2}}$,則( 。
A.當(dāng)n=2時(shí),f(2)=$\frac{1}{2}$+$\frac{1}{3}$;f(k+1)比f(wàn)(k)多了1項(xiàng)
B.當(dāng)n=2時(shí),f(2)=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$;f(k+1)比f(wàn)(k)多了2k+1項(xiàng)
C.當(dāng)n=2時(shí),f(2)=$\frac{1}{2}$+$\frac{1}{3}$;f(k+1)比f(wàn)(k)多了k項(xiàng)
D.當(dāng)n=2時(shí),f(2)=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$;f(k+1)比f(wàn)(k)多了2k項(xiàng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=3,4Sn+1=6an+1-an+4Sn,則數(shù)列{an}的通項(xiàng)公式為an=3•($\frac{1}{2}$)n-1,n∈N

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.設(shè)函數(shù)f(x)=ex(sin x-cos x)(0<x<2π),則函數(shù)f(x)的極大值為eπ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在平面直角坐標(biāo)系xOy中,直線l經(jīng)過(guò)點(diǎn)A(-1,0),其傾斜角是α,以原點(diǎn)O為極點(diǎn),以x軸的非負(fù)半軸為極軸,與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,建立極坐標(biāo)系.設(shè)曲線C的極坐標(biāo)方程是ρ2=6ρcosθ-5.
(Ⅰ)若直線l和曲線C有公共點(diǎn),求傾斜角α的取值范圍;
(Ⅱ)設(shè)B(x,y)為曲線C任意一點(diǎn),求$\sqrt{3}x+y$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)f(x)=2|x|-|x+3|.
(Ⅰ)求不等式f(x)≤7的解集S;
(Ⅱ)若關(guān)于x不等式f(x)+|2t-3|≤0有解,求參數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.若存在實(shí)數(shù)a、b使得直線ax+by=1與線段AB(其中A(1,0),B(2,1))只有一個(gè)公共點(diǎn),且不等式$\frac{1}{si{n}^{2}θ}$+$\frac{p}{co{s}^{2}θ}$≥20(a2+b2)對(duì)于任意θ∈(0,$\frac{π}{2}$)成立,則正實(shí)數(shù)p的取值范圍為[1,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案