(08年巢湖市質(zhì)檢二理) (13分)已知點(diǎn)R(-3,0),點(diǎn)P在y軸上,點(diǎn)Q在x軸的正半軸上,點(diǎn)M在直線PQ上 ,且滿足,.
(Ⅰ)⑴當(dāng)點(diǎn)P在y軸上移動時(shí),求點(diǎn)M的軌跡C的方程;
(Ⅱ)設(shè)為軌跡C上兩點(diǎn),且,N(1,0),求實(shí)數(shù),使,且.
解析:(Ⅰ)設(shè)點(diǎn)M(x,y),由得P(0,),Q().
由得(3,)?(,)=0,即
又點(diǎn)Q在x軸的正半軸上,故點(diǎn)M的軌跡C的方程是.……6分
(Ⅱ)解法一:由題意可知N為拋物線C:y2=4x的焦點(diǎn),且A、B為過焦點(diǎn)N的直線與拋物線C的兩個(gè)交點(diǎn)。
當(dāng)直線AB斜率不存在時(shí),得A(1,2),B(1,-2),|AB|,不合題意;………7分
當(dāng)直線AB斜率存在且不為0時(shí),設(shè),代入得
則|AB|,解得 …………………10分
代入原方程得,由于,所以,
由,得 . ……………………13分
解法二:由題設(shè)條件得
由(6)、(7)解得或,又,故. …………………13分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(08年巢湖市質(zhì)檢二)(12分)若函數(shù)的圖象與直線相切,并且切點(diǎn)的橫坐標(biāo)依次成公差為的等差數(shù)列。
(Ⅰ)求的值;
(Ⅱ)若點(diǎn)是圖象的對稱中心,且,求點(diǎn)的坐標(biāo)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年巢湖市質(zhì)檢二)(14分)對于數(shù)列,定義為數(shù)列的一階差分?jǐn)?shù)列,其中
.
(Ⅰ)若數(shù)列的通項(xiàng)公式,求的通項(xiàng)公式;
(Ⅱ)若數(shù)列的首項(xiàng)是1,且滿足.
①設(shè),求數(shù)列的通項(xiàng)公式;
②求的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年巢湖市質(zhì)檢二)(14分)設(shè)函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若當(dāng)時(shí),設(shè)函數(shù)圖象上任意一點(diǎn)處的切線的傾斜角為,求的取值范圍;
(Ⅲ)若關(guān)于的方程在區(qū)間[0,2]上恰好有兩個(gè)相異的實(shí)根,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年巢湖市質(zhì)檢二文) (13分)函數(shù)在處取得極小值,在處取得極大值,且.
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)求函數(shù)的極大值與極小值的和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com