8.某公司的班車在8:00,8:30發(fā)車,小明在7:50至8:30之間到達發(fā)車站乘坐班車,且到達發(fā)車站的時刻是隨機的,則他等車時間不超過10分鐘的概率是$\frac{1}{2}$.

分析 求出小明等車時間不超過10分鐘的時間長度,代入幾何概型概率計算公式,可得答案.

解答 解:設(shè)小明到達時間為y,
當y在7:50至8:00,或8:20至8:30時,
小明等車時間不超過10分鐘,
故P=$\frac{20}{40}$=$\frac{1}{2}$.
故答案為:$\frac{1}{2}$.

點評 本題考查的知識點是幾何概型,難度不大,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知二次方程ax2+bx+c=0(a>0)的兩個根為-2,3,則不等式ax2+bx+c>0的解為{x|x<-2或x>3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=$\sqrt{lo{g}_{\frac{1}{3}}(x-2)}$的定義域為A,函數(shù)g(x)=($\frac{1}{2}$)x(x≥-2)的值域為B.
(1)求(∁RA)∩B;
(2)若集合C={x|a≤x≤2a-2}且A∩C=C,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=cosx•sin(x+$\frac{π}{6}$),則函數(shù)f(x)的最小正周期為π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.某校高二成立3個社團,有4名同學(xué),每人只選一個社團,恰有1個社團沒有同學(xué)選,共有42 種不同參加方案(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=$\frac{lg(x+1)}{\sqrt{x-1}}$的定義域為( 。
A.(-1,+∞)B.(-1,1)C.[1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若函數(shù)f(x)=$\left\{\begin{array}{l}{{a}^{x-a},x≤a}\\{-{x}^{2}+2ax-{a}^{2}+2a,x>a}\end{array}\right.$(a>0且a≠1)在其定義域內(nèi)單調(diào),則實數(shù)a的取值范圍為( 。
A.(0,$\frac{1}{2}$)B.(0,$\frac{1}{2}$]C.($\frac{1}{2}$,1)D.[$\frac{1}{2}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.直線y=a分別與函數(shù)y=4x+4和y=3x+lnx的圖象相交于M、N兩點,則|MN|的最小值為( 。
A.5B.1C.$\frac{5}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-2,x).
(1)當$\overrightarrow{a}$⊥$\overrightarrow$時,求x的值;
(2)若x=$\frac{1}{2}$,求|$\overrightarrow{a}$+2$\overrightarrow$|.

查看答案和解析>>

同步練習冊答案