函數(shù)f(x)=
x2+1,x≥0
-x2,x<0
的單調(diào)遞增區(qū)間為( 。
A、(-∞,0),[0,+∞)
B、(-∞,0)
C、[0,+∞)
D、(-∞,+∞)
考點(diǎn):函數(shù)的單調(diào)性及單調(diào)區(qū)間
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:首先根據(jù)分段函數(shù)的解析式畫(huà)出函數(shù)的圖象,進(jìn)一步根據(jù)函數(shù)函數(shù)的圖象確定函數(shù)的單調(diào)區(qū)間.
解答: 解:已知函數(shù)f(x)=
x2+1,x≥0
-x2x<0

則:函數(shù)的圖象為:
根據(jù)函數(shù)的圖象得:函數(shù)的單調(diào)遞增區(qū)間為:(-∞,+∞)
故選:D
點(diǎn)評(píng):本題考查的知識(shí)要點(diǎn):函數(shù)的圖象的應(yīng)用,函數(shù)單調(diào)性的應(yīng)用,屬于基礎(chǔ)題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:0<m<n<1,1<a<b,下列各式中一定成立的是(  )
A、bm>an
B、bm<an
C、mb>na
D、mb<na

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知0<α<
π
2
,tan
α
2
+
1
tan
α
2
=
5
2
,試求sin(α-
π
3
)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinθ=
1
3
,tanθ<0,則cosθ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在R上定義運(yùn)算?:x?y=x(l-y),若對(duì)任意x>2,不等式(x-a)?x≤a+2都成立,則實(shí)數(shù)a的取值范圍是(  )
A、(-∞,-3)
B、(-∞,7]
C、(-∞,1]
D、(-∞,1]∪[7,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|-1≤x≤1},B={x|x2-2x≤0},則A∩(∁RB)=( 。
A、[-1,0)
B、[-1,0]
C、[0,1]
D、(-∞,1]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x、y滿足約束條件
3x-y-6≤0
x-y+2≥0
x≥0,y≥0
,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為10,則
2
a
+
3
b
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知變量x、y滿足的約束條件
y≤x
x+y≤1
y≥-1
,則z=3x+2y的最大值為(  )
A、-3
B、
5
2
C、4
D、-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙兩人在一次射擊測(cè)試中各射靶10次,如圖分別是這兩人命中環(huán)數(shù)的直方圖,
若他們的成績(jī)平均數(shù)分別為
.
x1
.
x2
,成績(jī)的標(biāo)準(zhǔn)差分別為s1和s2,則(  )
A、
.
x1
=
.
x2
,s1>s2
B、
.
x1
=
.
x2
,s1<s2
C、
.
x1
.
x2
,s1=s2
D、
.
x1
.
x2
,s1=s2

查看答案和解析>>

同步練習(xí)冊(cè)答案