【題目】已知點,,若直線上至少存在三個點,使得是直角三角形,則實數(shù)的取值范圍是( )
A.B.
C.D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】蘋果是人們?nèi)粘I钪谐R姷臓I養(yǎng)型水果.某地水果批發(fā)市場銷售來自5個不同產(chǎn)地的富士蘋果,各產(chǎn)地的包裝規(guī)格相同,它們的批發(fā)價格(元/箱)和市場份額如下:
產(chǎn)地 | |||||
批發(fā)價格 | |||||
市場份額 |
市場份額亦稱“市場占有率”.指某一產(chǎn)品的銷售量在市場同類產(chǎn)品中所占比重.
(1)從該地批發(fā)市場銷售的富士蘋果中隨機抽取一箱,求該箱蘋果價格低于元的概率;
(2)按市場份額進行分層抽樣,隨機抽取箱富士蘋果進行檢驗,
①從產(chǎn)地共抽取箱,求的值;
②從這箱蘋果中隨機抽取兩箱進行等級檢驗,求兩箱產(chǎn)地不同的概率;
(3)由于受種植規(guī)模和蘋果品質(zhì)的影響,預(yù)計明年產(chǎn)地的市場份額將增加,產(chǎn)地的市場份額將減少,其它產(chǎn)地的市場份額不變,蘋果銷售價格也不變(不考慮其它因素).設(shè)今年蘋果的平均批發(fā)價為每箱元,明年蘋果的平均批發(fā)價為每箱元,比較的大小.(只需寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是梯形, , , , ,側(cè)面底面.
(1)求證:平面平面;
(2)若與底面所成角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】微信已成為人們常用的社交軟件,“微信運動”是由騰訊開發(fā)的一個類似計步數(shù)據(jù)庫的公眾賬號.手機用戶可以通過關(guān)注“微信運動”公眾號查看自己每天行走的步數(shù),同時也可以和好友進行運動量的PK或點贊.現(xiàn)從小明的微信朋友圈內(nèi)隨機選取了50人(男、女各25人),并記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下表:
步數(shù) 性別 | 0~3000 | 3001~6000 | 6001~9000 | 9001~12000 | >12000 |
男 | 1 | 1 | 3 | 15 | 5 |
女 | 0 | 4 | 11 | 8 | 2 |
若某人一天走路的步數(shù)超過9000步被系統(tǒng)評定為“積極型”,否則被系統(tǒng)評定為“懈怠型”。
(1)利用樣本估計總體的思想,估計小明的所有微信好友中每日走路步數(shù)超過12000步的概率;
(2)根據(jù)題意完成下面的2×2列聯(lián)表,并據(jù)此判斷能否有99.5%的把握認為“評定類型”與“性別”有關(guān)?
積極型 | 懈怠型 | 總計 | |
男 | |||
女 | |||
總計 |
附:,其中.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的四個頂點圍成的四邊形的面積為,原點到直線的距離為.
(1)求橢圓的方程;
(2)已知定點,是否存在過的直線,使與橢圓交于,兩點,且以為直徑的圓過橢圓的左頂點?若存在,求出的方程:若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近期,某公交公司分別推出支付寶和微信掃碼支付乘車活動,活動設(shè)置了一段時間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付.某線路公交車隊統(tǒng)計了活動剛推出一周內(nèi)每一天使用掃碼支付的人次,用表示活動推出的天數(shù),表示每天使用掃碼支付的人次(單位:十人次),統(tǒng)計數(shù)據(jù)如表1所示:表1:
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
6 | 11 | 21 | 34 | 66 | 101 | 196 |
根據(jù)以上數(shù)據(jù),繪制了如圖所示的散點圖.
(1)根據(jù)散點圖判斷,在推廣期內(nèi),與均為大于零的常數(shù))哪一個適宜作為掃碼支付的人次關(guān)于活動推出天數(shù)的回歸方程類型?(給出判斷即可,不必說明理由);
(2)根據(jù)(1)的判斷結(jié)果及表l中的數(shù)據(jù),求關(guān)于的回歸方程,并預(yù)測活動推出第8天使用掃碼支付的人次;
(3)推廣期結(jié)束后,車隊對乘客的支付方式進行統(tǒng)計,結(jié)果如表2
表2:
支付方式 | 現(xiàn)金 | 乘車卡 | 掃碼 |
比例 |
已知該線路公交車票價為2元,使用現(xiàn)金支付的乘客無優(yōu)惠,使用乘車卡支付的乘客享受8折優(yōu)惠,掃碼支付的乘客隨機優(yōu)惠,根據(jù)統(tǒng)計結(jié)果得知,使用掃碼支付的乘客,享受7折優(yōu)惠的概率為,享受8折優(yōu)惠的概率為,享受9折優(yōu)惠的概率為.根據(jù)所給數(shù)據(jù)以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,估計一名乘客一次乘車的平均費用.
參考數(shù)據(jù):
66 | 1.54 | 2.711 | 50.12 | 3.47 |
其中,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點,的坐標(biāo)分別為,,直線,相交于點,且它們的斜率之積為-2,設(shè)點的軌跡是曲線.
(1)求曲線的方程;
(2)已知直線與曲線相交于不同兩點、(均不在坐標(biāo)軸上的點),設(shè)曲線與軸的正半軸交于點,若,垂足為且,求證:直線恒過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩定點,,點P是平面內(nèi)的動點,且,記動點P的軌跡是W.
(1)求動點P的軌跡W的方程;
(2)圓與x軸交于C,D兩點,過圓上一動點K(異于C,D點)作兩條直線KC,KD分別交軌跡W于G,H,M,N四點.設(shè)四邊形GMHN面積為S,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】唐代詩人李頎的詩《古從軍行》開頭兩句說:“白日登山望烽火,黃昏飲馬傍交河.”詩中隱含著一個有趣的數(shù)學(xué)問題——“將軍飲馬”,即將軍在觀望烽火之后從山腳下某處出發(fā),先到河邊飲馬再回到軍營,怎樣走才能使總路程最短?在如圖所示的直角坐標(biāo)系中,設(shè)軍營所在平面區(qū)域為,河岸線所在直線方程為.假定將軍從點處出發(fā),只要到達軍營所在區(qū)域即回到軍營,則將軍可以選擇最短路程為_____________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com