【題目】已知橢圓:的一個(gè)焦點(diǎn)為,點(diǎn)在上.
(1)求橢圓的方程;
(2)若直線:與橢圓相交于,兩點(diǎn),問軸上是否存在點(diǎn),使得是以為直角頂點(diǎn)的等腰直角三角形?若存在,求點(diǎn)的坐標(biāo);若不存在,說明理由.
【答案】(1)(2)見解析
【解析】
先求出c的值,再根據(jù),又,即可得到橢圓的方程;假設(shè)y軸上存在點(diǎn),是以M為直角頂點(diǎn)的等腰直角三角形,設(shè),,線段AB的中點(diǎn)為,根據(jù)韋達(dá)定理求出點(diǎn)N的坐標(biāo),再根據(jù),,即可求出m的值,可得點(diǎn)M的坐標(biāo)
由題意可得,點(diǎn)在C上,
,
又,
解得,,
橢圓C的方程為,
假設(shè)y軸上存在點(diǎn),是以M為直角頂點(diǎn)的等腰直角三角形,
設(shè),,線段AB的中點(diǎn)為,
由,消去y可得,
,解得,
,,
,,
,
依題意有,,
由,可得,可得,
由可得,
,,
代入上式化簡(jiǎn)可得,
則,
解得,
當(dāng)時(shí),點(diǎn)滿足題意,當(dāng)時(shí),點(diǎn)滿足題意
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面,,,,為的中點(diǎn).
(1)求證:平面;
(2)若點(diǎn)在線段上,且滿足,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市一調(diào)查機(jī)構(gòu)針對(duì)該市市場(chǎng)占有率最高的甲、乙兩家網(wǎng)絡(luò)外賣企業(yè)以下簡(jiǎn)稱外賣甲,外賣乙的經(jīng)營(yíng)情況進(jìn)行了調(diào)查,調(diào)查結(jié)果如表:
日期 | 第1天 | 第2天 | 第3天 | 第4天 | 第5天 |
外賣甲日接單x(百單 | 5 | 2 | 9 | 8 | 11 |
外賣乙日接單y(百單 | 2.2 | 2.3 | 10 | 5 | 15 |
(Ⅰ)據(jù)統(tǒng)計(jì)表明,y與x之間具有線性相關(guān)關(guān)系.經(jīng)計(jì)算求得y與x之間的回歸方程為,假定每單外賣業(yè)務(wù)企業(yè)平均能獲純利潤(rùn)3元,試預(yù)測(cè)當(dāng)外賣乙日接單量不低于2500單時(shí),外賣甲所獲取的日純利潤(rùn)的大致范圍;(x值精確到0.01)
(Ⅱ)試根據(jù)表格中這五天的日接單量情況,從平均值和方差角度說明這兩家外賣企業(yè)的經(jīng)營(yíng)狀況.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《高中數(shù)學(xué)課程標(biāo)準(zhǔn)》(2017 版)規(guī)定了數(shù)學(xué)學(xué)科的六大核心素養(yǎng).為了比較甲、乙兩名高二學(xué)生的數(shù)學(xué)核心素養(yǎng)水平,現(xiàn)以六大素養(yǎng)為指標(biāo)對(duì)二人進(jìn)行了測(cè)驗(yàn),根據(jù)測(cè)驗(yàn)結(jié)果繪制了雷達(dá)圖(如圖,每項(xiàng)指標(biāo)值滿分為分,分值高者為優(yōu)),則下面敘述正確的是( )
(注:雷達(dá)圖(Radar Chart),又可稱為戴布拉圖、蜘蛛網(wǎng)圖(Spider Chart),可用于對(duì)研究對(duì)象的多維分析)
A.甲的數(shù)據(jù)分析素養(yǎng)高于乙
B.甲的數(shù)學(xué)建模素養(yǎng)優(yōu)于數(shù)學(xué)抽象素養(yǎng)
C.乙的六大素養(yǎng)中邏輯推理最差
D.乙的六大素養(yǎng)整體水平優(yōu)于甲
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為迎接年北京冬季奧運(yùn)會(huì),普及冬奧知識(shí),某校開展了“冰雪答題王”冬奧知識(shí)競(jìng)賽活動(dòng).現(xiàn)從參加冬奧知識(shí)競(jìng)賽活動(dòng)的學(xué)生中隨機(jī)抽取了名學(xué)生,將他們的比賽成績(jī)(滿分為分)分為組:,,,,,,得到如圖所示的頻率分布直方圖.
(1)求的值;
(2)記表示事件“從參加冬奧知識(shí)競(jìng)賽活動(dòng)的學(xué)生中隨機(jī)抽取一名學(xué)生,該學(xué)生的比賽成績(jī)不低于分”,估計(jì)的概率;
(3)在抽取的名學(xué)生中,規(guī)定:比賽成績(jī)不低于分為“優(yōu)秀”,比賽成績(jī)低于分為“非優(yōu)秀”.請(qǐng)將下面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為“比賽成績(jī)是否優(yōu)秀與性別有關(guān)”?
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
男生 | |||
女生 | |||
合計(jì) |
參考公式及數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】自由購是通過自助結(jié)算方式購物的一種形式.某大型超市為調(diào)查顧客使用自由購的情況,隨機(jī)抽取了100人,統(tǒng)計(jì)結(jié)果整理如下:
20以下 | [20,30) | [30,40) | [40,50) | [50,60) | [60,70] | 70以上 | |
使用人數(shù) | 3 | 12 | 17 | 6 | 4 | 2 | 0 |
未使用人數(shù) | 0 | 0 | 3 | 14 | 36 | 3 | 0 |
(Ⅰ)現(xiàn)隨機(jī)抽取1名顧客,試估計(jì)該顧客年齡在且未使用自由購的概率;
(Ⅱ)從被抽取的年齡在使用自由購的顧客中,隨機(jī)抽取3人進(jìn)一步了解情況,用表示這3人中年齡在的人數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望;
(Ⅲ)為鼓勵(lì)顧客使用自由購,該超市擬對(duì)使用自由購的顧客贈(zèng)送1個(gè)環(huán)保購物袋.若某日該超市預(yù)計(jì)有5000人購物,試估計(jì)該超市當(dāng)天至少應(yīng)準(zhǔn)備多少個(gè)環(huán)保購物袋.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列滿足.
(1)求的通項(xiàng)公式;
(2)設(shè)等比數(shù)列滿足,問: 與數(shù)列的第幾項(xiàng)相等?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,平面平面,為線段上一點(diǎn),, 為的中點(diǎn).
(1)證明:平面;
(2)求三棱錐C-BMN的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知復(fù)數(shù),是實(shí)數(shù),是虛數(shù)單位.
(1)求復(fù)數(shù);
(2)若復(fù)數(shù)所表示的點(diǎn)在第一象限,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com