已知函數(shù)f(x)=(ax2+bx+c)e2-x在x=1處取得極值,且在點(diǎn)(2,f(2))處的切線(xiàn)方程為6x+y-27=0.
(1)求a,b,c的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間,并指出f(x)在x=1處的極值是極大值還是極小值.
分析:(1)求導(dǎo)函數(shù),利用函數(shù)在x=1處取得極值,且在點(diǎn)(2,f(2))處的切線(xiàn)方程為6x+y-27=0,建立方程組,即可求得a,b,c的值;
(2)求導(dǎo)函數(shù),由導(dǎo)數(shù)的正負(fù),可得函數(shù)的單調(diào)性,從而可得函數(shù)的極值.
解答:解:(1)f′(x)=(2ax+b)e2-x+(ax2+bx+c)e2-x(-1)=[-ax2+(2a-b)x+(b-c)]e2-x,…(4分)
由題意,
f′(1)=0
f′(2)=-6
f(2)=15
,即
[-a+(2a-b)+(b-c)]e1=0
[-4a+2(2a-b)+(b-c)]e0=-6
(4a+2b+c)e0=15
,
∴a=c=1,b=5;  …(8分)
(2)由(1)知,f(x)=(x2+5x+1)e2-x,∴f′(x)=(-x2-3x+4)e2-x=-(x+4)(x-1)e2-x,…(10分)
令f′(x)>0,得-4<x<1,f′(x)<0,得x<-4或x>1,
∴函數(shù)f(x)的單調(diào)遞增區(qū)間為(-4,1),單調(diào)遞減區(qū)間為(-∞,-4)和(1,+∞).…(13分)
由此可知,f(x)在x=1處的取值是極大值.       …(14分)
點(diǎn)評(píng):本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的極值,切線(xiàn)的斜率,考查函數(shù)的單調(diào)性,正確求導(dǎo)是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線(xiàn)x=
π
6
對(duì)稱(chēng),求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時(shí)f(x)的表達(dá)式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線(xiàn)l與直線(xiàn)3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項(xiàng)和為Sn,則S2010的值為( 。
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對(duì)于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案