7.四面體ABCD中,AB=2,BC=CD=DB=3,AC=AD=$\sqrt{13}$,則四面體ABCD外接球表面積是16π.

分析 證明AB⊥平面BCD,求出四面體ABCD外接球的半徑,即可求出四面體ABCD外接球表面積.

解答 解:由題意,△ACD中,CD邊上的高為AE=$\frac{\sqrt{43}}{2}$,△BCD中,CD邊上的高為BE=$\frac{3\sqrt{3}}{2}$,
∴AE2=BE2+AB2,
∴AB⊥BE,
∵AB⊥CD,CD∩BE=E,
∴AB⊥平面BCD,
∵△BCD的外接圓的半徑為$\sqrt{3}$,
∴四面體ABCD外接球的半徑為$\sqrt{1+3}$=2,
∴四面體ABCD外接球表面積4π•22=16π,
故答案為16π.

點評 本題考查四面體ABCD外接球表面積,考查學生的計算能力,求出四面體ABCD外接球的半徑是關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

17.設x,y滿足約束條件$\left\{{\begin{array}{l}{x,y≥0}\\{x-y≥-1}\\{x+y≤3}\end{array}}\right.$,則z=x-2y的取值范圍為(  )
A.(-3,3)B.[-3,3]C.[-3,3)D.[-2,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知函數(shù)f(x)是偶函數(shù),且f(x-2)在[0,2]上是減函數(shù),則( 。
A.f(0)<f(-1)<f(2)B.f(-1)<f(0)<f(2)C.f(-1)<f(2)<f(0)D.f(2)<f(0)<f(-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.某企業(yè)生產A、B兩種產品,根據市場調查和預測,A產品的利潤與投資成正比,其關系如圖1,B產品的利潤與投資的算術平方根成正比,其關系如圖2(注:利潤與投資單位是萬元)

(1)分別將A、B兩種產品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關系式;
(2)該企業(yè)已籌集到10萬元資金,并全部投入A、B兩種產品的生產,問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.若函數(shù)$f(x)=\frac{1}{3}a{x^3}+\frac{1}{2}a{x^2}-2ax+2a+1$的圖象經過四個象限,則實數(shù)a的取值范圍是(  )
A.$-\frac{5}{3}<a<-\frac{3}{16}$B.$-\frac{8}{5}<a<-\frac{3}{16}$C.$-\frac{8}{3}<a<-\frac{1}{16}$D.$-\frac{6}{5}<a<-\frac{3}{16}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.在正三棱錐V-ABC內,有一個半球,其底面與正三棱錐的底面重合,且與正三棱錐的三個側面都相切,若半球的半徑為2,則正三棱錐的體積的最小時,其底面邊長為$6\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知f(x)為奇函數(shù),當x∈[1,4]時,f(x)=x(x+1),那么當-4≤x≤-1時,f(x)的最大值為-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.點(-1,1)到直線x+y-2=0的距離為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=mlnx+(4-2m)x+$\frac{1}{x}$(m∈R).
(1)當m≥4時,求函數(shù)f(x)的單調區(qū)間;
(2)設t,s∈[1,3],不等式|f(t)-f(s)|<(a+ln3)(2-m)-2ln3對任意的m∈(4,6)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案