分析 (1)由條件利用待定系數(shù)法求得a、b的值,可得函數(shù)的解析式.
(2)根據(jù)的定義域為R,關(guān)于原點對稱,再根據(jù)f(-x)=-f(x),從而得出結(jié)論.
解答 解:(1)∵函數(shù)f(x)=3x-3ax+b,$f(1)=\frac{8}{3}$,$f(2)=\frac{80}{9}$,
∴$\left\{\begin{array}{l}{{3}^{1}{-3}^{a+b}=\frac{8}{3}}\\{{3}^{2}{-3}^{2a+b}=\frac{80}{9}}\end{array}\right.$,即$\left\{\begin{array}{l}{{3}^{a+b}=\frac{1}{3}}\\{{3}^{2a+b}=\frac{1}{9}}\end{array}\right.$,即$\left\{\begin{array}{l}{a+b=-1}\\{2a+b=-2}\end{array}\right.$,∴a=-1,b=0.
(2)由(1)可得f(x)=3x-3-x,它的定義域為R,關(guān)于原點對稱,
再根據(jù)f(-x)=3-x-3x=-f(3x-3-x)=-f(x),故該函數(shù)為奇函數(shù).
點評 本題主要考查用待定系數(shù)法求函數(shù)的解析式,函數(shù)的奇偶性的判定,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y={({\frac{1}{2}})^x}$ | B. | $y=\frac{2}{x}$ | C. | y=-2x3 | D. | $y={log_2}{x^2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①②③ | B. | ②③④ | C. | ①③⑤ | D. | ①④⑤ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 11 | B. | 99 | C. | 120 | D. | 121 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | 4 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com