已知動圓與圓相切,且與圓相內(nèi)切,記圓心的軌跡為曲線;設(shè)為曲線上的一個不在軸上的動點,為坐標原點,過點作的平行線交曲線于兩個不同的點.
(1)求曲線的方程;
(2)試探究和的比值能否為一個常數(shù)?若能,求出這個常數(shù),若不能,請說明理由;
(3)記的面積為,的面積為,令,求的最大值.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的左右焦點分別為,點為短軸的一個端點,.
(1)求橢圓的方程;
(2)如圖,過右焦點,且斜率為的直線與橢圓相交于兩點,為橢圓的右頂點,直線分別交直線于點,線段的中點為,記直線的斜率為.
求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,已知橢圓E經(jīng)過點A(2,3),對稱軸為坐標軸,焦點F1,F(xiàn)2在x軸上,離心率e=,斜率為2的直線l過點A(2,3).
(1)求橢圓E的方程;
(2)在橢圓E上是否存在關(guān)于直線l對稱的相異兩點?若存在,請找出;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為,短軸端點分別為.
(1)求橢圓的標準方程;
(2)若,是橢圓上關(guān)于軸對稱的兩個不同點,直線與軸交于點,判斷以線段為直徑的圓是否過點,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓,過點且離心率為.
(1)求橢圓的方程;
(2)已知是橢圓的左右頂點,動點M滿足,連接AM交橢圓于點P,在x軸上是否存在異于A、B的定點Q,使得直線BP和直線MQ垂直.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的兩個焦點分別為和,離心率.
(1)求橢圓的方程;
(2)若直線()與橢圓交于不同的兩點、,且線段
的垂直平分線過定點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的一個頂點和兩個焦點構(gòu)成的三角形的面積為4.
(1)求橢圓的方程;
(2)已知直線與橢圓交于、兩點,試問,是否存在軸上的點,使得對任意的,為定值,若存在,求出點的坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓的中心為原點,長軸在軸上,離心率,又橢圓上的任一點到橢圓的兩焦點的距離之和為.
(1)求橢圓的標準方程;
(2)若平行于軸的直線與橢圓相交于不同的兩點、,過、兩點作圓心為的圓,使橢圓上的其余點均在圓外.求的面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com