14.解不等式:x4-3x2-10<0.

分析 由題意設(shè)t=x2則t≥0,代入不等式轉(zhuǎn)化為關(guān)于t的一元二次不等式,由一元二次不等式的解法求出t的范圍,再求出x的范圍,即可得到不等式的解集.

解答 解:由題意設(shè)t=x2,則t≥0,代入不等式得,
t2-3t-10<0,則(t+2)(t-5)<0,解得-2<t<5,
所以-2<x2<5,即0≤x2<5,
解得$-\sqrt{5}<x<\sqrt{5}$,
所以不等式的解集是{x|$-\sqrt{5}<x<\sqrt{5}$}.

點(diǎn)評(píng) 本題考查了利用換元法求出高次不等式的解集,一元二次不等式的解法,以及轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.若tanα=-$\frac{1}{3}$,則$\frac{1}{{sin2α+{{cos}^2}α}}$=$\frac{10}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知定義在R上的函數(shù)g(x)的導(dǎo)函數(shù)為g′(x),滿足g′(x)-g(x)<0,若函數(shù)g(x)的圖象關(guān)于直線x=2對(duì)稱,且g(4)=1,則不等式$\frac{g(x)}{{e}^{x}}>1$的解集為( 。
A.(-2,+∞)B.(0,+∞)C.(-∞,0)D.(-∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=|x-3|.
(Ⅰ)若不等式f(x)-f(x+5)≥|m-1|有解,求實(shí)數(shù)m的取值范圍;
(Ⅱ)若|a|<1,|b|<3,且a≠0,證明:$\frac{{f({ab})}}{|a|}$>f(${\frac{a}}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知m>1,且關(guān)于x的不等式m-|x-2|≥1的解集為[0,4].
(1)求m的值;
(2)若a,b均為正實(shí)數(shù),且滿足2a+b+m+4=ab,求a+b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.求下列函數(shù)的單調(diào)遞增區(qū)間.
(1)f(x)=$\sqrt{cos(-2x)}$;                                        
(2)y=-2cos(2x+$\frac{π}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.設(shè)函數(shù)f(x)=|a-x|+|2x-4|
(1)若a=1,求f(x)的最小值;
(2)若f(a)<f(0),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知x0是函數(shù)f(x)=2sinx-πl(wèi)nx(x∈(0,π))的零點(diǎn),0<x1<x2<π,則
①x0∈(1,e);
②x0∈(e,π);
③f(x1)-f(x2)<0;
④f(x1)-f(x2)>0.
其中正確的命題是( 。
A.①④B.②④C.①③D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.矩形ABCD中,AB<BC,將△ABC沿著對(duì)角線AC所在的直線進(jìn)行翻折,記BD中點(diǎn)為M,則在翻折過(guò)程中,下列說(shuō)法錯(cuò)誤的是(  )
A.存在使得AB⊥DC的位置B.存在使得AB⊥BD的位置
C.存在使得AM⊥DC的位置D.存在使得AM⊥AC的位置

查看答案和解析>>

同步練習(xí)冊(cè)答案