【題目】已知拋物線的焦點(diǎn)為拋物線上存在一點(diǎn) 到焦點(diǎn)的距離等于

(1)求拋物線的方程;

(2)過(guò)點(diǎn)的直線與拋物線相交于,兩點(diǎn)(兩點(diǎn)在軸上方),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,且,求的外接圓的方程.

【答案】(1)(2)

【解析】試題分析:(1)利用拋物線定義求拋物線的方程;(2)設(shè)直線的方程為.代入并整理得,利用根與系數(shù)的關(guān)系轉(zhuǎn)化條件解得即直線的方程為然后根據(jù)外心的幾何性質(zhì),確定圓心坐標(biāo)即可.

試題解析:

(1)拋物線的準(zhǔn)線方程為,

所以點(diǎn) 到焦點(diǎn)的距離為

解得

所以拋物線的方程為

(2)解法:設(shè)直線的方程為

代入并整理得

,解得

設(shè), ,

, ,

因?yàn)?/span>

因?yàn)?/span>,所以

,又 ,解得

所以直線的方程為

設(shè)的中點(diǎn)為,

,

所以直線的中垂線方程為

因?yàn)?/span>的中垂線方程為

所以△的外接圓圓心坐標(biāo)為

因?yàn)閳A心到直線的距離為,且,

所以圓的半徑

所以△的外接圓的方程為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一盒中裝有除顏色外其余均相同的12個(gè)小球,從中隨機(jī)取出1個(gè)球,取出紅球的概率為,取出黑球的概率為,取出白球的概率為,取出綠球的概率為.求:

(1)取出的1個(gè)球是紅球或黑球的概率;

(2)取出的1個(gè)球是紅球或黑球或白球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是函數(shù)在區(qū)間上的圖象,為了得到這個(gè)函數(shù)的圖象,只需將y=sinx的圖象

A. 向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的,縱坐標(biāo)不變

B. 向左平移至個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,縱坐標(biāo)不變

C. 向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的,縱坐標(biāo)不變

D. 向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,縱坐標(biāo)不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】讀下列各題所給的程序,依據(jù)程序畫(huà)出程序框圖,并說(shuō)明其功能:

(1)INPUT “x=”;x

IF x>1 OR x<-1 THEN

y=1

ELSE y=0

END IF

PRINE y

END

(2)INPUT “輸入三個(gè)正數(shù)a,b,c=”;a,b,c

IF a+b>c AND a+c>b AND b+c>a THEN

p=(a+b+c)/2

S=SQR(p*(p-a)*(p-b)*(p-c))

PRINT “三角形的面積S=”S

ELSE

PRINT “構(gòu)不成三角形”

END IF

END

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在直角坐標(biāo)系中,橢圓 的上焦點(diǎn)為,橢圓的離心率為 ,且過(guò)點(diǎn)

1求橢圓的方程;

2設(shè)過(guò)橢圓的上頂點(diǎn)的直線與橢圓交于點(diǎn)不在軸上,垂直于的直線與交于點(diǎn),與軸交于點(diǎn),若,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在海島A上有一座海拔1千米的山,山頂設(shè)有一個(gè)觀察站P,上午11時(shí),測(cè)得一輪船在島北偏東30°,俯角為30°B處,到11時(shí)10分又測(cè)得該船在島北偏西60°,俯角為60°C處.

(1)求船的航行速度是每小時(shí)多少千米?

(2)又經(jīng)過(guò)一段時(shí)間后,船到達(dá)海島的正西方向的D處,問(wèn)此時(shí)船距島A有多遠(yuǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), 為常數(shù)).

() 函數(shù)的圖象在點(diǎn)處的切線與函數(shù)的圖象相切,求實(shí)數(shù)的值;

(Ⅱ) 若, ,且,都有成立,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中,

當(dāng)時(shí), 的零點(diǎn)為______;(將結(jié)果直接填寫(xiě)在橫線上)

當(dāng)時(shí),如果存在,使得,試求的取值范圍;

Ⅲ)如果對(duì)于任意,都有成立,試求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,滿足Sn=2an-1.(n∈N*)

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;

(Ⅱ)若數(shù)列{bn}滿足bn=an,求數(shù)列{bn}的前n項(xiàng)和Tn.

查看答案和解析>>

同步練習(xí)冊(cè)答案