8.不等式|x+3|+|x-2|≥7的解集為{x|x≤-4,或x≥3}.

分析 把要解的不等式等價(jià)轉(zhuǎn)化為與之等價(jià)的三個(gè)不等式組,求出每個(gè)不等式組的解集,再取并集,即得所求.

解答 解:不等式|x+3|+|x-2|≥7,
等價(jià)于$\left\{\begin{array}{l}{x<-3}\\{-x-3+2-x≥7}\end{array}\right.$ ①;
或$\left\{\begin{array}{l}{-3<x≤2}\\{x+3+2-x≥7}\end{array}\right.$②;
或$\left\{\begin{array}{l}{x>2}\\{x+3+x-2≥7}\end{array}\right.$ ③.
解①求得 x≤-4,解②求得x∈∅,解③求得x≥3,
綜上可得,不等式|x+3|+|x-2|≥7的解集為{x|x≤-4,或x≥3},
故答案為:{x|x≤-4,或x≥3}.

點(diǎn)評(píng) 本題主要考查絕對(duì)值不等式的解法,體現(xiàn)了等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,已知曲線C1的極坐標(biāo)方程是ρ=$\sqrt{2}$,把C1上各點(diǎn)的縱坐標(biāo)都?jí)嚎s為原來的$\frac{{\sqrt{2}}}{2}$倍,得到曲線C2,直線l的參數(shù)方程是$\left\{\begin{array}{l}x={x_0}+\frac{{\sqrt{2}}}{2}t\\ y={y_0}+\frac{{\sqrt{2}}}{2}t\end{array}$(t為參數(shù)).
(Ⅰ)寫出曲線C1與曲線C2的直角坐標(biāo)方程;
(Ⅱ)設(shè)M(x0,y0),直線l與曲線C2交于A,B兩點(diǎn),若|MA|•|MB|=$\frac{8}{3}$,求點(diǎn)M軌跡的直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知中心在坐標(biāo)原點(diǎn)的橢圓C的一個(gè)頂點(diǎn)為(0,1),一個(gè)焦點(diǎn)為F(2,0).
(1)求橢圓C的方程;
(2)過點(diǎn)F的直線l交橢圓C于A,B,交y軸于M,若$\overrightarrow{MA}$=λ1$\overrightarrow{AF}$,且$\overrightarrow{MB}$=λ2$\overrightarrow{BF}$,求證:λ12為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在平面直角坐標(biāo)系中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點(diǎn).
(1)若A、B兩點(diǎn)的縱坐標(biāo)分別為$\frac{4}{5}$、$\frac{12}{13}$,求cosα和cosβ的值;
(2)在(1)的條件下,求cos(β-α)的值;
(3)在(1)的條件下,求$\frac{sin2α-co{s}^{2}α}{1+cos2α}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,左、右焦點(diǎn)分別為F1、F2,過F1的直線交橢圓于A、B兩點(diǎn),△AF1F2的周長(zhǎng)為6.
(1)求橢圓C的方程;
(2)當(dāng)直線AB的斜率為1時(shí),求△F2AB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)正項(xiàng)等比數(shù)列{an}中,a1=3,$\frac{1}{2}{a_3}$是9a1與8a2的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=$\frac{1}{{{{log}_2}{a_n}•{{log}_3}{a_{n+1}}}}$,求數(shù)列{bn}的前n項(xiàng)和Tn;若對(duì)任意n∈N*都有Tn>logm2成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x≤4-2y\\ x≥0\\ y≥0\end{array}\right.$,那么x2+y2-10x-6y的最小值為$-\frac{121}{5}$ .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.為了大力弘揚(yáng)中華優(yōu)秀傳統(tǒng)文化,某校購(gòu)進(jìn)了《三國(guó)演義》、《水滸傳》、《紅樓夢(mèng)》和《西游記》若干套,如果每班每學(xué)期可以隨機(jī)領(lǐng)取兩套不同的書籍,那么該校高一(1)班本學(xué)期領(lǐng)到《三國(guó)演義》和《水滸傳》的概率為( 。
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若(ax2-$\frac{1}{x}$)6的展開式中x3的系數(shù)是20,則實(shí)數(shù)a=( 。
A.2B.1C.1或-1D.-1

查看答案和解析>>

同步練習(xí)冊(cè)答案