【題目】已知拋物線Ω:x2=2py(p>0),過點(diǎn)(0,2p)的直線與拋物線Ω交于A、B兩點(diǎn),AB的中點(diǎn)為M,若點(diǎn)M到直線y=2x的最小距離為 ,則p=( 。
A.
B.1
C.
D.2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下四個(gè)關(guān)于圓錐曲線的命題中:
①雙曲線 與橢圓 有相同的焦點(diǎn);
②以拋物線的焦點(diǎn)弦(過焦點(diǎn)的直線截拋物線所得的線段)為直徑的圓與拋物線的準(zhǔn)線是相切的;
③設(shè)A,B為兩個(gè)定點(diǎn),k為常數(shù),若|PA|﹣|PB|=k,則動(dòng)點(diǎn)P的軌跡為雙曲線;
④過定圓C上一點(diǎn)A作圓的動(dòng)弦AB,O為原點(diǎn),若 則動(dòng)點(diǎn)P的軌跡為橢圓.其中正確的個(gè)數(shù)是( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}是各項(xiàng)均為正數(shù)的等比數(shù)列,其前n項(xiàng)和為Sn , 若a1a5=64,S5﹣S3=48.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)對(duì)于正整數(shù)k,m,l(k<m<l),求證:“m=k+1且l=k+3”是“5ak , am , al這三項(xiàng)經(jīng)適當(dāng)排序后能構(gòu)成等差數(shù)列”成立的充要條件;
(3)設(shè)數(shù)列{bn}滿足:對(duì)任意的正整數(shù)n,都有a1bn+a2bn﹣1+a3bn﹣2+…+anb1=32n+1﹣4n﹣6,且集合 中有且僅有3個(gè)元素,試求λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,則“∠C>90°”的一個(gè)充分非必要條件是( )
A.sin2A+sin2B<sin2C
B.sinA= ,(A為銳角),cosB=
C.c2>2(a+b﹣1)
D.sinA<cosB
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x2﹣ax+a+3,g(x)=ax﹣2a.
(1)若函數(shù)h(x)=f(x)﹣g(x)在[﹣2,0]上有兩個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)若存在x0∈R,使得f(x0)≤0與g(x0)≤0同時(shí)成立,求實(shí)數(shù)a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著霧霾日益嚴(yán)重,很多地區(qū)都實(shí)行了“限行”政策,現(xiàn)從某地區(qū)居民中,隨機(jī)抽取了300名居民了解他們對(duì)這一政策的態(tài)度,繪成如圖所示的2×2列聯(lián)表:
反對(duì) | 支持 | 合計(jì) | |
男性 | 70 | 60 | |
女性 | 50 | 120 | |
合計(jì) |
(1)試問有沒有99%的把握認(rèn)為對(duì)“限行”政策的態(tài)度與性別有關(guān)?
(2)用樣本估計(jì)總體,把頻率作為概率,若從該地區(qū)所有的居民(人數(shù)很多)中隨機(jī)抽取3人,用ξ表示所選3人中反對(duì)的人數(shù),試寫出ξ的分布列,并求出ξ的數(shù)學(xué)期望.
K2= ,其中n=a+b+c+d獨(dú)立性檢驗(yàn)臨界表:
P(K2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 , ,設(shè) .
(Ⅰ)若f(α)=2,求 的值;
(Ⅱ)在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且滿足(2a﹣b)cosC=ccosB,求f(A)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)樣本數(shù)據(jù)x1 , x2 , …,x10的均值和方差分別為1和4,若yi=xi+a(a為非零常數(shù),i=1,2,…,10),則y1 , y2 , …,y10的均值和方差分別為( 。
A.1+a,4
B.1+a,4+a
C.1,4
D.1,4+a
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: =1(a>b>0).
(1)若橢圓的離心率為 ,且點(diǎn)(1, )在橢圓上,
①求橢圓的方程;
②設(shè)P(﹣1,﹣ ),R、S分別為橢圓C的右頂點(diǎn)和上頂點(diǎn),直線PR和PS與y軸和x軸相交于點(diǎn)M,N,求直線MN的方程.
(2)設(shè)D(b,0),過D點(diǎn)的直線l與橢圓C交于E、F兩點(diǎn),且E、F均在y軸的右側(cè), =2 ,求橢圓離心率的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com