分析 (1)根據(jù)數(shù)列的遞推公式和對(duì)數(shù)的運(yùn)算性質(zhì)即可求出數(shù)列{bn}的通項(xiàng)公式,
(2)利用裂項(xiàng)求和即可求出數(shù)列{cn}的前n項(xiàng)和Tn.
解答 解:(1)a1=8,an=3Sn-1+8(n≥2),
∴an-1=3Sn-2+8,
∴an-an-1=3Sn-1+8-3Sn-2-8=3an-1,
∴an=4an-1,
∴{an}是以4為公比的等比數(shù)列,
∵a1=8,
∴an=8•4n-1=2•4n=22n+1,
∴bn=log2an=2n+1,
(2)${c_n}=\frac{1}{{{b_n}{b_{n+1}}}}$=$\frac{1}{(2n+1)(2n+3)}$=$\frac{1}{2}$($\frac{1}{2n+1}$-$\frac{1}{2n+3}$),
∴Tn=$\frac{1}{2}$[($\frac{1}{3}$-$\frac{1}{5}$)+($\frac{1}{5}$-$\frac{1}{7}$)+…+($\frac{1}{2n+1}$-$\frac{1}{2n+3}$)]=$\frac{1}{2}$($\frac{1}{3}$-$\frac{1}{2n+3}$)=$\frac{n}{6n+9}$.
點(diǎn)評(píng) 本題考查了數(shù)列的遞推公式和裂項(xiàng)求和,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | △PF1F2的內(nèi)切圓圓心在直線$x=\frac{a}{2}$上 | B. | △PF1F2的內(nèi)切圓圓心在直線x=b上 | ||
C. | △PF1F2的內(nèi)切圓圓心在直線OP上 | D. | △PF1F2的內(nèi)切圓經(jīng)過點(diǎn)(a,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | 0 | 1 | 3 | 4 |
y | 2.4 | 4.5 | 4.6 | 6.5 |
A. | 2.4 | B. | 2.84 | C. | 3.67 | D. | 3.95 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1} | B. | {1,2} | C. | {2,3} | D. | {1,2,3} |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com