3.i為虛數(shù)單位,則$\frac{2}{1+i}$+i=1.

分析 直接由復(fù)數(shù)代數(shù)形式的乘除運算化簡$\frac{2}{1+i}$+i得答案.

解答 解:$\frac{2}{1+i}$+i=$\frac{2(1-i)}{(1+i)(1-i)}+i=1-i+i=1$,
故答案為:1.

點評 本題考查了復(fù)數(shù)代數(shù)形式的乘除運算,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.運行如圖所示的程序框圖,則輸出結(jié)果為( 。
A.$\frac{11}{8}$B.$\frac{5}{4}$C.$\frac{3}{2}$D.$\frac{23}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)$f(x)=\frac{1}{3}{x^3}+a{x^2}+bx$在x=-1時取得極大值$\frac{5}{3}$,則ab=( 。
A.-15B.15C.-3D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若${(x-2)^5}={a_0}+{a_1}x+{a_2}{x^2}+{a_3}{x^3}+{a_4}{x^4}+{a_5}{x^5}$,則a1+a2+a3+a4+a5=( 。
A.-1B.-31C.-33D.31

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={x|x-x2<0},B={0,1,2,3},則(∁RA)∩B=( 。
A.{0,1}B.{x|0≤x≤1}C.{2,3}D.{1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知f(x)=$\sqrt{3}$sinx•sin(x+$\frac{π}{2}$)-cos2x+$\frac{1}{2}$
(Ⅰ)求f(x)的最小正周期和單調(diào)遞增區(qū)間
(Ⅱ)求f(x)在[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知i是虛數(shù)單位,若復(fù)數(shù)z滿足(2-i)z=3+i,則復(fù)數(shù)z為1+i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c,若c2=(a-b)2+6,C=$\frac{π}{3}$,則△ABC的面積是(  )
A.$\frac{3\sqrt{3}}{2}$B.$\frac{9\sqrt{3}}{2}$C.$\sqrt{3}$D.3$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖在直角坐標系xOy中,過動點P的直線與直線l:x=-1垂直,垂足為Q,點F(1,0)滿足$\overrightarrow{FP}•\overrightarrow{FQ}=\overrightarrow{QP}•\overrightarrow{QF}$.
(1)求動點P的軌跡C的方程;
(2)證明:以線段PF為直徑的圓與y軸相切.

查看答案和解析>>

同步練習(xí)冊答案