若a>b,a,b∈R,c>0則下列不等式正確的是(  )
A、
1
a
1
b
B、ab>bc
C、a2>b2
D、ac>bc
考點:不等式的基本性質(zhì)
專題:不等式
分析:利用不等式的基本性質(zhì)判斷每個答案中不等式是否成立,即可得到答案.
解答: 解:對于A,當a>0,b<0時,
1
a
1
b
,故不成立,
對于B,∵當a>c,b<0時,ab<ac,故不成立,
對于C,當a=0,b=-1,a2<b2,故不成立,
對于D,∵a>b,a,b∈R,c>0,∴ac>bc,成立,
故選:D
點評:本題考查了不等式的基本性質(zhì),屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

集合M={x|(x-1)(x-2)<0},N={x|x<a},若M⊆N,則實數(shù)a的取值范圍是( 。
A、[2,+∞)
B、(2,+∞)
C、[1,+∞)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(sinx)=cos17x,求f(
1
2
)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=x+sin2x(-
π
2
≤x≤π)的值域為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}中的a1,a4027是函數(shù)f(x)=x3-2x2-x+1的兩個極值點,則函數(shù)y=sin(a2014x+
π
6
)是周期為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

與橢圓
x2
64
+
y2
100
=1共焦點,且與雙曲線
x2
2
-y2=1有相同漸近線的雙曲線方程是( 。
A、
x2
12
-
y2
24
=1
B、
x2
24
-
y2
12
=1
C、
y2
24
-
x2
12
=1
D、
y2
12
-
x2
24
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將雙曲線x2-y2=2繞原點逆時針旋轉(zhuǎn)45°后可得到雙曲線y=
1
x
,據(jù)此類推可求得雙曲線y=
3
x-1
的焦距為( 。
A、2
3
B、2
6
C、4
D、4
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,若在矩形OABC中隨機一粒豆子,則豆子落在圖中陰影部分的概率為( 。
A、
1
π
B、
2
π
C、
3
π
D、
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從甲、乙兩班某項測試成績中各隨機抽取5名同學的成績,得到如下莖葉圖.已知甲班樣本成績的中位數(shù)為13,乙班樣本成績的平均數(shù)為16.
(Ⅰ) 求x,y的值;
(Ⅲ) 試估計甲、乙兩班在該項測試中整體水平的高低(只需寫出結(jié)論);
(Ⅲ) 從兩組樣本成績中分別去掉一個最低分和一個最高分,再從兩組
剩余成績中分別隨機選取一個成績,求這兩個成績的和ξ的分布列及數(shù)學期望.
(注:方差s2=
1
n
[(x1-
.
x
2+(x2-
.
x
2+…+(xn-
.
x
2],其中
.
x
為x1,x2,…,xn的平均數(shù).)

查看答案和解析>>

同步練習冊答案