4.x,y滿足$\left\{{\begin{array}{l}{y≥|x-1|}\\{3y-x-3≤0}\end{array}}\right.$,則z=x+2y的最大值為( 。
A.0B.5C.7D.10

分析 作出題中不等式組表示的平面區(qū)域,得如圖的△ABC及其內(nèi)部,再將目標函數(shù)z=x+2y對應的直線進行平移,可得當x=3且y=2時,z取得最大值為7.

解答 解:作出不等式組$\left\{{\begin{array}{l}{y≥|x-1|}\\{3y-x-3≤0}\end{array}}\right.$表示的平面區(qū)域,
得到如圖的△ABC及其內(nèi)部,
其中A(0,1),B(1,0),
由$\left\{\begin{array}{l}{y=x-1}\\{3y-x-3=0}\end{array}\right.$可得C(3,2)
將直線l:z=x+2y進行平移,
當l經(jīng)過點C時,目標函數(shù)z達到最大值
∴z最大值=7.
故選:C.

點評 本題給出二元一次不等式組,求目標函數(shù)z=x+2y的最大值,著重考查了二元一次不等式組表示的平面區(qū)域和簡單的線性規(guī)劃等知識.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(\frac{1}{10})^{x},x≤10}\\{-lg(x+2),x>10}\end{array}\right.$,若f(8-m2)<f(2m),則實數(shù)m的取值范圍是( 。
A.(-4,2)B.(-4,1)C.(-2,4)D.(-∞,-4)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知數(shù)列{an}的前n項和為Sn,滿足${S}_{n}={n}^{2}{a}_{n}-{n}^{2}(n-1)$,且${a}_{1}=\frac{1}{2}$.
(1)令$_{n}=\frac{n+1}{n}{S}_{n}$,證明:bn-bn-1=n(n≥2);
(2)求{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.(x2+x+1)(x-2)8=a0+a1(x-1)+a2(x-1)2+…+a10(x-1)10則a1+a2+…+a10=(  )
A.-3B.3C.2D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.如圖,在幾何體S-ABCD中,AB⊥平面SBC,CD⊥平面SBC,SB⊥SC,AB=SB=SC=2CD=2,G是線段BS的中點.
(1)求GD與平面SCD所成角的正弦值;
(2)求平面SAD與平面SBC所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知數(shù)列{an}的前n和為Sn,若${S_n}={n^2}-2n$,則a4+a5=12.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.(1)在所給的平面直角坐標系內(nèi),畫出函數(shù)f(x)=x2-2x(x∉R)的圖象,根據(jù)圖象寫出函數(shù)f(x)的單調(diào)遞減區(qū)間并用定義證明;
(2)求函數(shù)f(x)=x2-2x,x∈[a,a+1](其中a為實數(shù))的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=|ax2-8x|(a>0).
(1)當a≤8時,求函數(shù)f(x)在區(qū)間[-1,1]上的最大值;
(2)設b∈R,若存在實數(shù)a,使得函數(shù)y=|f(x)-2|在區(qū)間[0,b]上單調(diào)遞減,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知等比數(shù)列{an}滿足:a1=$\frac{1}{2}$,a1,a2,a3-$\frac{1}{8}$成等差數(shù)列,公比q∈(0,1)
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=nan,求數(shù)列{an}的前n項和Sn

查看答案和解析>>

同步練習冊答案