A. | (-2,-1) | B. | (-1,0) | C. | $(0,\frac{1}{2})$ | D. | $(\frac{1}{2},1)$ |
分析 根據(jù)導(dǎo)函數(shù)判斷函數(shù)f(x)=ex+4x-3單調(diào)遞增,運用零點判定定理,判定區(qū)間.
解答 解:∵函數(shù)f(x)=ex+4x-3
∴f′(x)=ex+4
當(dāng)x>0時,f′(x)=ex+4>0
∴函數(shù)f(x)=ex+4x-3在(-∞,+∞)上為f(0)=e0-3=-2<0,
f($\frac{1}{2}$)=$\sqrt{e}$+2-3=$\sqrt{e}$-1=${e}^{\frac{1}{2}}$-e0>0,
∴f(0)•f($\frac{1}{2}$)<0,
∴函數(shù)f(x)=ex+4x-3的零點所在的區(qū)間為(0,$\frac{1}{2}$)
故選:C.
點評 本題考察了函數(shù)零點的判斷方法,借助導(dǎo)數(shù),函數(shù)值,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{2}$或2 | C. | $\frac{1}{2}$或2 | D. | $\frac{1}{2}或\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com