若變量x,y滿足約束條件
y≤x
x+y≤4
y≥1
,則z=2x+y的最大值為( 。
A、5B、6C、7D、8
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合確定z的最大值.
解答: 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:(陰影部分ABC).由z=2x+y得y=-2x+z,
平移直線y=-2x+z,
由圖象可知當(dāng)直線y=-2x+z經(jīng)過點(diǎn)C(3,1)時(shí),直線y=-2x+z的截距最大,
此時(shí)z最大.
將C的坐標(biāo)代入目標(biāo)函數(shù)z=2x+y,
得z=2×3+1=7.即z=2x+y的最大值為7.
故選:C
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,結(jié)合目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=x+1,則
y
x
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)空間幾何體的三視圖如圖所示,則這個(gè)幾何體的體積為 (  )  
A、
14
3
B、7
C、14
D、28

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果α、β是關(guān)于x的方程lg(3x)lg(5x)=1的兩個(gè)實(shí)根,求αβ的積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足約束條件
x-y+1≥0
4x+3y-12≤0
y-2≥0
,則z=
2x-y+1
x+1
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知-1≤x≤0,求函數(shù)y=2x+2-3.4x的最大值和最小值,并求出取得最值時(shí)對(duì)應(yīng)的自變量的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明函數(shù)f(x)=
1
x
-1在(0,+∞)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)幾何體的三視圖如圖所示,則該幾何體的表面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
4x-1
2x
的圖象(  )
A、關(guān)于直線y=-x對(duì)稱
B、關(guān)于原點(diǎn)對(duì)稱
C、關(guān)于y軸對(duì)稱
D、關(guān)于直線y=x對(duì)稱

查看答案和解析>>

同步練習(xí)冊(cè)答案