12.設(shè)集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},則M的非空真子集的個數(shù)為14.

分析 先求出集合M={5,6,7,8},由此能求出集合M的非空真子集的個數(shù).

解答 解:∵集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},
∴M={5,6,7,8},
∴M的非空真子集的個數(shù)為:24-2=14.
故答案為:14.

點評 本題考查集合的非空真子集的個數(shù)的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意集合的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知$\overrightarrow{a}$=(-3,2),$\overrightarrow$=(-1,-2).求
(1)($\overrightarrow{a}$+$\overrightarrow$)•($\overrightarrow{a}$-2$\overrightarrow$);
(2)|$\overrightarrow{a}$-2$\overrightarrow$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如果一個球的外切圓錐的高是這個球的半徑的3倍,則圓錐的側(cè)面積和球的表面積之比為( 。
A.9:4B.4:3C.3:1D.3:2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.冪函數(shù)f(x)=(t3-t+1)x3t+1是偶函數(shù),且在(0,1)上單調(diào)遞增,則f(2)=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若$f(x)=\sqrt{x({x+1})}$,$g(x)=\frac{1}{{\sqrt{x}}}$,則f(x)•g(x)=$\sqrt{x+1}$(x>0)..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.三棱錐P-ABC的四個頂點都在球O的球面上,已知PA、PB、PC兩兩垂直,PA=1,PB+PC=4,當(dāng)三棱錐的體積最大時,球心O到平面ABC的距離是( 。
A.$\frac{\sqrt{6}}{12}$B.$\frac{\sqrt{6}}{6}$C.$\frac{\sqrt{6}}{3}$D.$\frac{3}{2}$-$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知0<x<$\frac{π}{2}$,且sin(2x-$\frac{π}{4}$)=-$\frac{\sqrt{2}}{10}$,則sinx+cosx=$\frac{2\sqrt{10}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)$f(x)=\left\{\begin{array}{l}{log_2}x\;,\;\;x>0\\{2^3}\;,\;\;x≤0\end{array}\right.$,則$f({f({\frac{1}{2}})})$的值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知非空集合M滿足:對任意x∈M,總有x2∉M且$\sqrt{x}∉M$,若M⊆{0,1,2,3,4,5},則滿足條件M的個數(shù)是( 。
A.11B.12C.15D.16

查看答案和解析>>

同步練習(xí)冊答案