在平面直角坐標(biāo)系xOy中,點(diǎn)A(5,0),對(duì)于某個(gè)正實(shí)數(shù)k,存在函數(shù)f(x)=ax2(a>0),使得
OP
=λ•(
OA
|
OA
|
+
OQ
|
OQ
|
)
(λ為常數(shù)),這里點(diǎn)P、Q的坐標(biāo)分別為P(1,f(1)),Q(k,f(k)),則k的取值范圍為(  )
分析:由題設(shè)知,向量
OP
=(1,a),
OA
=(5,0),
OQ
=(k,ak2),
OA
|
OA
|
=(1,0),
OQ
|
OQ
|
=(
1
1+a2k2
,
ak
1+a2k2
),由
OP
=λ•(
OA
|
OA
|
+
OQ
|
OQ
|
)
,知1=λ(1+
1
1+a2k2
),a=
akλ
1+a2k2
,由此能求出k的范圍.
解答:解:由題設(shè)知,點(diǎn)P(1,a),Q(k,ak2),A(5,0),
∴向量
OP
=(1,a),
OA
=(5,0),
OQ
=(k,ak2),
OA
|
OA
|
=(1,0),
OQ
|
OQ
|
=(
1
1+a2k2
,
ak
1+a2k2
),
OP
=λ•(
OA
|
OA
|
+
OQ
|
OQ
|
)
(λ為常數(shù)),.
∴1=λ(1+
1
1+a2k2
),a=
akλ
1+a2k2
,
兩式相除得,k-1=
1+a2k2
,
k-2=a2k>0
∴k(1-a2)=2,且k>2.
∴k=
2
1-a2
,且0<1-a2<1.
∴k=
2
1-a2
>2.
故選A.
點(diǎn)評(píng):本題考查平面向量的綜合運(yùn)算,解題時(shí)要認(rèn)真審題,注意挖掘題設(shè)中的隱含條件,合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xoy中,已知圓心在直線y=x+4上,半徑為2
2
的圓C經(jīng)過(guò)坐標(biāo)原點(diǎn)O,橢圓
x2
a2
+
y2
9
=1(a>0)
與圓C的一個(gè)交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為10.
(1)求圓C的方程;
(2)若F為橢圓的右焦點(diǎn),點(diǎn)P在圓C上,且滿足PF=4,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點(diǎn).若點(diǎn)A的橫坐標(biāo)是
3
5
,點(diǎn)B的縱坐標(biāo)是
12
13
,則sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,若焦點(diǎn)在x軸的橢圓
x2
m
+
y2
3
=1
的離心率為
1
2
,則m的值為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•泰州三模)選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.設(shè)直線AC與BD的交點(diǎn)為P,求動(dòng)點(diǎn)P的軌跡的參數(shù)方程(以t為參數(shù))及普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•東莞一模)在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn)為F1(-1,0),且橢圓C的離心率e=
1
2

(1)求橢圓C的方程;
(2)設(shè)橢圓C的上下頂點(diǎn)分別為A1,A2,Q是橢圓C上異于A1,A2的任一點(diǎn),直線QA1,QA2分別交x軸于點(diǎn)S,T,證明:|OS|•|OT|為定值,并求出該定值;
(3)在橢圓C上,是否存在點(diǎn)M(m,n),使得直線l:mx+ny=2與圓O:x2+y2=
16
7
相交于不同的兩點(diǎn)A、B,且△OAB的面積最大?若存在,求出點(diǎn)M的坐標(biāo)及對(duì)應(yīng)的△OAB的面積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案