【題目】已知橢圓C:x2+4y2=16,點(diǎn)M(2,1).
(1)求橢圓C的焦點(diǎn)坐標(biāo)和離心率;
(2)求通過(guò)M點(diǎn)且被這點(diǎn)平分的弦所在的直線(xiàn)方程.

【答案】
(1)解:由橢圓C:x2+4y2=16,則 ,可知橢圓的焦點(diǎn)在x軸上,

a=4,b=2,則c= =2

∴橢圓的焦點(diǎn)坐標(biāo)為(2 ,0),(﹣2 ,0),

離心率e= =


(2)解:設(shè)過(guò)M點(diǎn)的直線(xiàn)與橢圓交于點(diǎn)A,B兩點(diǎn),A(x1,y1),B(x2,y2),

由題意得: ,

兩式相減得: + =0

由中點(diǎn)坐標(biāo)公式,得 (x1+x2)=2, (y1+y2)=1,

kAB= =﹣ =﹣ ,

則所求直線(xiàn)方程為y﹣1= (x﹣2),

∴x+2y﹣4=0


【解析】(1)將橢圓轉(zhuǎn)化成標(biāo)準(zhǔn)方程: ,可知橢圓的焦點(diǎn)在x軸上,a=4,b=2,則c= =2 ,焦點(diǎn)坐標(biāo)為(2 ,0),(﹣2 ,0),離心率e= = ;(2)設(shè)A(x1 , y1),B(x2 , y2),由 ,作差 + =0,由中點(diǎn)坐標(biāo)公式及斜率公式可知:kAB= =﹣ =﹣ ,利用直線(xiàn)的點(diǎn)斜式方程,即可求得直線(xiàn)AB的方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2x+t,g(x)=x2﹣t(t∈R)
(1)當(dāng)x∈[2,3]時(shí),求函數(shù)f(x)的值域(用t表示)
(2)設(shè)集合A={y|y=f(x),x∈[2,3]},B={y|y=|g(x)|,x∈[2,3]},是否存在正整數(shù)t,使得A∩B=A.若存在,請(qǐng)求出所有可能的t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】微信運(yùn)動(dòng)和運(yùn)動(dòng)手環(huán)的普及,增強(qiáng)了人民運(yùn)動(dòng)的積極性,每天一萬(wàn)步稱(chēng)為一種健康時(shí)尚,某中學(xué)在全校范圍內(nèi)內(nèi)積極倡導(dǎo)和督促師生開(kāi)展“每天一萬(wàn)步”活動(dòng),經(jīng)過(guò)幾個(gè)月的扎實(shí)落地工作后,學(xué)校想了解全校師生每天一萬(wàn)步的情況,學(xué)校界定一人一天走路不足千步為不健康生活方式,不少于千步為超健康生活方式者,其他為一般生活方式者,學(xué)校委托數(shù)學(xué)組調(diào)查,數(shù)學(xué)組采用分層抽樣的辦法去估計(jì)全校師生的情況,結(jié)合實(shí)際及便于分層抽樣,認(rèn)定全校教師人數(shù)為人,高一學(xué)生人數(shù)為人,高二學(xué)生人數(shù)人,高三學(xué)生人數(shù),從中抽取人作為調(diào)查對(duì)象,得到了如圖所示的這人的頻率分布直方圖,這人中有人被學(xué)校界定為不健康生活方式者.

(1)求這次作為抽樣調(diào)查對(duì)象的教師人數(shù);

(2)根據(jù)頻率分布直方圖估算全校師生每人一天走路步數(shù)的中位數(shù)(四舍五入精確到整數(shù)步);

(3)校辦公室欲從全校師生中速記抽取人作為“每天一萬(wàn)步”活動(dòng)的慰問(wèn)對(duì)象,計(jì)劃學(xué)校界定不健康生活方式者鞭策性精神鼓勵(lì)元,超健康生活方式者表彰獎(jiǎng)勵(lì)元,一般生活方式者鼓勵(lì)性獎(jiǎng)勵(lì)元,利用樣本估計(jì)總體,將頻率視為概率,求這次校辦公室慰問(wèn)獎(jiǎng)勵(lì)金額恰好為元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知{an}是等差數(shù)列,其前n項(xiàng)和為Sn , {bn}是等比數(shù)列,且a1=b1=2,a4+b4=27,S4﹣b4=10.
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)記Tn=anb1+an1b2+…+a1bn , n∈N* , 是否存在實(shí)數(shù)p,q,r,對(duì)于任意n∈N* , 都有Tn=pan+qbn+r,若存在求出p,q,r的值,若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=cosxsin(x+ )﹣
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)△ABC中,角A,B,C所對(duì)的邊為a,b,c,f( )= ,B= ,a=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知x>0,y>0,且2x+8y﹣xy=0,求:
(1)xy的最小值;
(2)x+y的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市司法部門(mén)為了宣傳《憲法》舉辦法律知識(shí)問(wèn)答活動(dòng),隨機(jī)對(duì)該市18~68歲的人群抽取一個(gè)容量為n的樣本,并將樣本數(shù)據(jù)分成五組:[18,28),[28,38),[38,48),[48,58),[58,68),再將其按從左到右的順序分別編號(hào)為第1組,第2組,…,第5組,繪制了樣本的頻率分布直方圖;并對(duì)回答問(wèn)題情況進(jìn)行統(tǒng)計(jì)后,結(jié)果如下表所示.

組號(hào)

分組

回答正確的人數(shù)

回答正確的人數(shù)占本組的比例

第1組

[18,28)

5

0.5

第2組

[28,38)

18

a

第3組

[38,48)

27

0.9

第4組

[48,58)

x

0.36

第5組

[58,68)

3

0.2


(1)分別求出a,x的值;
(2)從第2,3,4組回答正確的人中用分層抽樣方法抽取6人,則第2,3,4組每組應(yīng)各抽取多少人?
(3)在(2)的前提下,決定在所抽取的6人中隨機(jī)抽取2人頒發(fā)幸運(yùn)獎(jiǎng),求:所抽取的人中第2組至少有1人獲得幸運(yùn)獎(jiǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸)中,圓的方程為.

(1)求圓的直角坐標(biāo)方程;

(2)設(shè)圓與直線(xiàn)交于點(diǎn),若點(diǎn)的坐標(biāo)為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列{an}中,已知對(duì)任意n∈N* , a1+a2+a3+…+an=3n﹣1,則a12+a22+a32+…+an2等于( )
A.(3n﹣1)2
B.
C.9n﹣1
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案