17.下面說法中不正確的命題個數(shù)為是( 。
?①命題“?x∈R,x2-x+1≤0”的否定是“$?{x_0}∈R,{x_0}^2-{x_0}+1>0$”;
?②若“p∨q”為假命題,則p,q均為假命題;
?③“mn>0”是“方程mx2+ny2=1表示橢圓”的充分不必要條件.
A.0B.1C.2D.3

分析 由全稱命題的否定為特稱命題,即可判斷①;
由復(fù)合命題的真值表,即可判斷②;
由方程mx2+ny2=1表示橢圓?m>0,n>0且m≠n,即可判斷③.

解答 解:對于①,命題“?x∈R,x2-x+1≤0”的否定是“$?{x_0}∈R,{x_0}^2-{x_0}+1>0$”,正確;
對于②,若“p∨q”為假命題,則p,q均為假命題,正確;
對于③,方程mx2+ny2=1表示橢圓?m>0,n>0且m≠n,
則“mn>0”是“方程mx2+ny2=1表示橢圓”的必要不充分條件,故③錯.
則不正確的命題個數(shù)為1.
故選:B.

點評 本題考查命題的真假判斷,主要是命題的否定、復(fù)合命題的真假判斷以及充分必要條件的判斷,考查判斷能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知點(x,y)在如圖所示的平面區(qū)域(陰影部分)內(nèi)運動,則z=x+y的最大值是5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知a,b,c為△ABC三個內(nèi)角所對的邊.
(1)若滿足條件asinA=bsinB.求證:△ABC為等腰三角形.
(2)若a+b=ab,邊長c=2,角C=$\frac{π}{3}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在四棱錐P-ABCD中,側(cè)面PAD是正三角形,且與底面ABCD垂直,底面ABCD是邊長為2的菱形,∠BAD=60°,N是PB的中點,過A、D、N三點的平面交PC于M,E為AD中點.
(Ⅰ)求證:EN∥平面PCD;
(Ⅱ)求證:BC⊥平面PEB;
(Ⅲ)求三棱錐M-PBE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若直線y=kx-1與拋物線y2=4x有且只有一個公共點,則k的值為0或1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,點P是圓O:x2+y2=4上一點,圓O在點P處的切線為m,PQ垂直x軸于點Q(P、Q不重合),線段PQ的重點為E,點A(-2,0),直線l:x=2與直線m交于點M.
(1)若點P(1,$\sqrt{3}$),求直線m的方程;
(2)當(dāng)P在圓O上運動時,證明A,E,M三點共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)g(x)=$\frac{1}{2}$sin(2x+$\frac{2π}{3}$),將其圖象向左平移$\frac{π}{4}$個單位,再向上平移$\frac{1}{2}$個單位得到函數(shù)f(x)=acos2(x+$\frac{π}{3}$)+b的圖象.
(1)求實數(shù)a、b的值;
(2)設(shè)函數(shù)φ(x)=g(x)-$\sqrt{3}$f(x),求函數(shù)φ(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點與拋物線C2:y2=2px(p>0)的焦點重合,曲線C1與C2相交于點($\frac{2}{3}$,$\frac{2}{3}$$\sqrt{6}$).
(I)求橢圓C1的方程;
(II)過右焦點F2的直線l(與x軸不重合)與橢圓C1交于A、C兩點,線段AC的中點為G,連接OG并延長交橢圓C1于B點(O為坐標(biāo)原點),求四邊形OABC的面積S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列說法正確的個數(shù)是( 。
(1)三點確定一個平面
(2)一條直線和一個點確定一個平面
(3)兩條直線確定一個平面
(4)三角形和梯形一定為平面圖形.
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案