已知函數(shù).

(1)試問該函數(shù)能否在處取到極值?若有可能,求實(shí)數(shù)的值;否則說明理由;

(2)若該函數(shù)在區(qū)間上為增函數(shù),求實(shí)數(shù)的取值范圍.

 

【答案】

(1)P=1   (2) [0,1]

【解析】

試題分析:解:(1),

若該函數(shù)能在處取到極值,則,

,此時(shí),,函數(shù)為單調(diào)函數(shù),這與

該函數(shù)能在處取到極值矛盾,則該函數(shù)不能在處取到極值.  (6)

(2)若該函數(shù)在區(qū)間上為增函數(shù),

則在區(qū)間上,恒成立,

① ;

② ,

綜上可知,.                     (12)

考點(diǎn):導(dǎo)數(shù)研究函數(shù)的單調(diào)性

點(diǎn)評:本題考查用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,這是導(dǎo)數(shù)的一個(gè)重要應(yīng)用.本題中用導(dǎo)數(shù)建立參數(shù)的方程與不等式,這是導(dǎo)數(shù)與極值、最值結(jié)合的一種常見方式.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1-x2
+
x2-1
的定義域是( 。
A、[-1,1]
B、{-1,1}
C、(-1,1)
D、(-∞,-1]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(1-b)x+b,x<0
(b-3)x2+2,x≥0
,在(-∞,+∞)上是減函數(shù),則實(shí)數(shù)b的范圍為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1-
a
x
,g(x)=
lnx
x
,且函數(shù)f(x)在點(diǎn)(1,f(1))處的切線與直線x+y+3=0垂直.
(I)求a的值;
(II)如果當(dāng)x∈(0,1)時(shí),t•g(x)≤f(x)恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
1
x+1
的定義域?yàn)榧螦,集合B=(-2,+∞),則集合(CRA)∩B=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

請考生注意:重點(diǎn)高中學(xué)生做(2)(3).一般高中學(xué)生只做(1)(2).
已知函數(shù)f(x)=(1-a)x-lnx-
a
x
-1(a∈R)

(1)若曲線y=f(x)在x=1和x=3處的切線互相平行,求a的值;
(2)當(dāng)a>0時(shí),討論f(x)的單調(diào)性;
(3)當(dāng)a=
3
4
時(shí),設(shè)g(x)=x2-bx+1,若對任意x1∈(0,2],都存在x2∈(0,2],都存在x2∈[1,2]使f(x1)≤g(x2),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案