如右圖所示的直觀圖,其平面圖形的面積為
A.3B.C.6D.3
C


設(shè)原圖形為△AOB,且△AOB的直觀圖為△A'OB',如圖
∵OA'=2,OB'=3,∠A'OB'=45°∴OA=4,OB=3,∠AOB=90°,因此,Rt△AOB的面積為S=×4×3=6,
故答案為:C
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,P-ABC是底面邊長為1的正三棱錐,D、E、F分別為棱長PA、PB、PC上的點, 截面DEF∥底面ABC, 且棱臺DEF-ABC與棱錐P-ABC的棱長和相等.(棱長和是指多面體中所有棱的長度之和)

(1)求證:P-ABC為正四面體;
(2)棱PA上是否存在一點M,使得BM與面ABC所成的角為45°?若存在,求出點M的位置;若不存在,請說明理由。
(3)設(shè)棱臺DEF-ABC的體積為V=, 是否存在體積為V且各棱長均相等的平行六面體,使得它與棱臺DEF-ABC有相同的棱長和,并且該平行六面體的一條側(cè)棱與底面兩條棱所成的角均為60°? 若存在,請具體構(gòu)造出這樣的一個平行六面體,并給出證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)如圖,在四棱錐中,平面平面,為等邊三角形,底面為菱形,的中點,
 
(1)求證:平面;
(2) 求四棱錐的體積
(3)在線段上是否存在點,使平面;  若存在,求出的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題12分)如圖,在側(cè)棱錐垂直底面的四棱錐ABCD-A1B1C1D1中,AD∥BC,
AD⊥AB,AB=。AD=2,BC=4,AA1=2,E是DD1的中點,F(xiàn)是平面B1C1E
與直線AA1的交點。
(1)證明:(i)EF∥A1D1;
(ii)BA1⊥平面B1C1EF;
(2)求BC1與平面B1C1EF所成的角的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在梯形中,,,,平面平面,四邊形是矩形,,點在線段上.

(1)求證:平面BCF⊥平面ACFE;
(2)當(dāng)為何值時,∥平面?證明你的結(jié)論;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,一個簡單空間幾何體的三視圖其主視圖與左視圖都是邊長為的正三角形,其俯視圖輪廓為正方形,則其體積是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

棱長為2的正四面體ABCD(如圖),其正視圖是底邊長為2的等腰三角形,則其側(cè)視圖面積是___

A

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知某個幾何體的三視圖如右側(cè),根據(jù)圖中標(biāo)出的尺寸(單位:cm),可得這個幾何體的體積是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

有一個幾何體的三視圖及其尺寸如下(單位),則該幾何體的表面積及體積為:
A.,B.,
C., D.以上都不正確

查看答案和解析>>

同步練習(xí)冊答案