17.函數(shù)f(x)=$\frac{1}{1-2x}$+lg(1+3x)的定義域是( 。
A.(-∞,-$\frac{1}{3}$)B.(-$\frac{1}{3}$,$\frac{1}{2}$)∪($\frac{1}{2}$,+∞)C.($\frac{1}{2}$,+∞)D.($\frac{1}{3}$,$\frac{1}{2}$)∪($\frac{1}{2}$,+∞)

分析 由1-2x≠0.1+3x>0,解不等式即可得到所求定義域.

解答 解:由1-2x≠0.1+3x>0,
可得x>-$\frac{1}{3}$,且x≠$\frac{1}{2}$,
則定義域為(-$\frac{1}{3}$,$\frac{1}{2}$)∪($\frac{1}{2}$,+∞),
故選:B.

點評 本題考查函數(shù)的定義域的求法,注意分式和對數(shù)的定義,考查運算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{k}$=1的離心率為$\frac{1}{2}$,則k的值為(  )
A.3B.$\frac{16}{3}$C.3或$\frac{16}{3}$D.$\frac{19}{25}$或21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)$f(x)=\frac{e^x}{x-1}$.
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若當(dāng)x≥2時,f'(x)≥af(x)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知向量$\overrightarrow{a}$=(-2,4),$\overrightarrow$=(-1,-2).
(1)求$\overrightarrow{a}$,$\overrightarrow$的夾角的余弦值;
(2)若向量$\overrightarrow{a}$-λ$\overrightarrow$與2$\overrightarrow{a}$+$\overrightarrow$垂直,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.袋中有外形、質(zhì)量完全相同的紅球、黑球、黃球、綠球共12個,從中任取一球,得到紅球的概率是$\frac{1}{4}$,得到黑球或黃球的概率是$\frac{7}{12}$,得到黃球或綠球的概率是$\frac{4}{12}$.
(1)試分別求得到黑球、黃球、綠球的概率;
(2)從中任取一球,求得到的不是“紅球或綠球”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lo{g}_{4}(x+1)|,-1<x<1}\\{cos\frac{π}{3}x,1≤x≤6}\end{array}\right.$,若存在實數(shù)x1,x2,x3,x4,滿足x1<x2<x3<x4,且f(x1)=f(x2)=f(x3)=f(x4),則$\frac{({x}_{3}-1)({x}_{4}-1)}{({x}_{1}+1)({x}_{2}+1)}$的取值范圍是( 。
A.(0,4)B.(0,$\frac{7}{4}$)C.($\frac{1}{2}$,$\frac{9}{4}$)D.($\frac{1}{4}$,$\frac{7}{8}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.定義在正實數(shù)集上的函數(shù)f(x)滿足:f(3x)=3f(x),且1≤x≤3時f(x)=1-|x-2|,若f(x)=f(2017),
則最小的實數(shù)x為413.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.計算lg4+lg500-lg2=3,$(\frac{1}{27})^{-\frac{1}{3}}$+(log316)•(log2$\frac{1}{9}$)=-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知命題p:A={a|?x∈R,x2-ax+2a≥0},命題q:B={a|?x∈[-1,4],2x-a+1≥0},若p∧q為假,p∨q為真,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案