(1)設(shè)u、v為實(shí)數(shù),證明:u2+v2;(2)請先閱讀下列材料,然后根據(jù)要求回答問題.
材料:已知△LMN內(nèi)接于邊長為1的正三角形ABC,求證:△LMN中至少有一邊的長不小于
證明:線段AN、AL、BL、BM、CM、CN的長分別設(shè)為a1、a2、b1、b2、c1、c2,設(shè)LN、LM、MN的長為x、y、z,
x2=a12+a22-2a1a2cos60°=a12+a22-a1a2
同理:y2=b12+b22-b1b2,z2=c12+c22-c1c2,
x2+y2+z2=a12+a22+b12+b22+c12+c22-a1a2-b1b2-c1c2

請利用(1)的結(jié)論,把證明過程補(bǔ)充完整;
(3)已知n邊形A1′A2′A3′…An′內(nèi)接于邊長為1的正n邊形A1A2…An,(n≥4),思考會有相應(yīng)的什么結(jié)論?請?zhí)岢鲆粋的命題,并給與正確解答.
注意:第(3)題中所提問題單獨(dú)給分,解答也單獨(dú)給分.本題按照所提問題的難度分層給分,解答也相應(yīng)給分,如果同時提出兩個問題,則就高不就低,解答也相同處理.

【答案】分析:(1)因?yàn)閡2+v2≥2uv,所以2(u2+v2)≥(u+v)2,從而有:u2+v2;
(2)補(bǔ)上:因?yàn)?nbsp;u2+v2,所以x2+y2+z2++-a1a2-b1b2-c1c2平方化開后再結(jié)合條件利用反證法即得.
(3)命題1:已知四邊形MNPQ內(nèi)接于邊長為1的正方形ABCD,求證:四邊形MNPQ中至少有一邊的長不小于
命題2:如圖2,已知六邊形A1B1C1D1E1F1內(nèi)接于邊長為1的正六邊形ABCDEF,求證:六邊形A1B1C1D1E1F1中,至少有一邊的長不小于
命題3:如圖3,已知n邊形A1A2…An內(nèi)接于邊長為1的正n邊形A1A2…An,(n≥4).求證:n邊形A1′A2′A3′…An′中,至少有一邊的長不小于cos(其中n≥3).下面對三個命題進(jìn)行證明即可.
解答:證明:(1)因?yàn)閡2+v2≥2uv,所以2(u2+v2)≥(u+v)2,
即有:u2+v2…(2分)
(2)因?yàn)?nbsp;u2+v2
所以x2+y2+z2++-a1a2-b1b2-c1c2
=[a12+a22+b12+b22+c12+c22]…(3分)
[++]=,…(4分)
因?yàn)閤2+y2+z2,所以x2、y2、z2中至少有一個不小于,即在x、y、z中至少有一個不小于.…(6分)
(3)解:命題1:如圖1,已知四邊形MNPQ內(nèi)接于邊長為1的正方形ABCD,求證:四邊形MNPQ中至少有一邊的長不小于
證明:線段AQ、AM、BM、BN、CN、CP、DP、DQ分別設(shè)為a1、a2、b1、b2、c1、c2、d1、d2,設(shè)MN、NP、PQ、QM為w、x、y、z,
因?yàn)閍1+d2=1,a2+b1=1,b2+c1=1,c2+d1=1,
所以(a1+a2)+(b1+b2)+(c1+c2)+(d1+d2)=4
這四組數(shù)中至少有一組數(shù)不小于1,不妨假定a1+a2≥1,那么a2≥1-a1,
因?yàn)閦2=a12+a22≥a12+(1-a12=2a12-2a1+1=2(a1-2+
所以z≥,即四邊形MNPQ中至少有一邊的長不小于
命題:(3分);證明:(3分)

命題2:如圖2,已知六邊形A1B1C1D1E1F1內(nèi)接于邊長為1的正六邊形ABCDEF,求證:六邊形A1B1C1D1E1F1中,至少有一邊的長不小于
證明:分別設(shè)線段AF1、AA1、BA1、BB1、…、FE1、FF1為a1、a2、b1、b2、…、f1、f2,如圖所示.
因?yàn)閍1+f2=1,a2+b1=1,b2+c1=1,c2+d1=1,d2+e1=1,e2+f1=1,
所以(a1+a2)+(b1+b2)+…+(f1+f2)=6,
這六組數(shù)中至少有一組數(shù)不小于1,不妨假定a1+a2≥1,那么a2≥1-a1
因?yàn)锳1F12=AA12+AF12-2AA1.AF1cos120°=a12+a22+a1a2
≥a12+(1-a12+a1(1-a1)=a12-a1+1=(a1-2+,
所以A1F1,即六邊形A1B1C1D1E1F1中,至少有一邊的長不小于
命題:(5分);證明:(5分)


命題3:如圖3,已知n邊形A1A2…An內(nèi)接于邊長為1的正n邊形A1A2…An,(n≥4).求證:n邊形A1′A2′A3′…An′中,至少有一邊的長不小于cos(其中n≥3).
證明:分別設(shè)線段A1 An′、A1A1′、A2A1′、A2A2′、…、AnA n-1′、AnAn′為a1、a1′、a2、a2′、…、an、an′,
因?yàn)閍1+a′=a2+a1′=a3+a2′=…=an+a n-1′=1,
所以(a1+a1′)+(a2+a2′)+…+(an+an′)=n.
這n組數(shù)中至少有一組數(shù)不小于1,不妨假定a1+a1′≥1,那么a1′≥1-a1,
于是在△A1A1′An′中有:
A1 An′2=A1A12+A1An2-2 A1A1′.A1An′cos
=a12+a12-2a1a1′cos≥a12+(1-a12-2 a1 (1-a1) cos
=2[cos+1]a12-2[cos+1]a1+1
=2[cos+1]( a1-2+[1-cos]
[1-cos]=sin2=cos2
故A1′An′≥cos,即n邊形A1′A2′A3′…An′中,至少有一邊的長不小于cos
命題:(7分);證明:(7分)

點(diǎn)評:本小題主要考查不等式的證明、數(shù)列的應(yīng)用、三角變換公式等基礎(chǔ)知識,考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想.屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,2),
b
=(0,1)
,設(shè)
u
=
a
+k
b
v
=2
a
-
b
,若
u
v
,則實(shí)數(shù)k的值為
-
1
2
-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•金山區(qū)二模)(1)設(shè)u、v為實(shí)數(shù),證明:u2+v2
(u+v)2
2
;(2)請先閱讀下列材料,然后根據(jù)要求回答問題.
材料:已知△LMN內(nèi)接于邊長為1的正三角形ABC,求證:△LMN中至少有一邊的長不小于
1
2

證明:線段AN、AL、BL、BM、CM、CN的長分別設(shè)為a1、a2、b1、b2、c1、c2,設(shè)LN、LM、MN的長為x、y、z,
x2=a12+a22-2a1a2cos60°=a12+a22-a1a2
同理:y2=b12+b22-b1b2,z2=c12+c22-c1c2
x2+y2+z2=a12+a22+b12+b22+c12+c22-a1a2-b1b2-c1c2

請利用(1)的結(jié)論,把證明過程補(bǔ)充完整;
(3)已知n邊形A1′A2′A3′…An′內(nèi)接于邊長為1的正n邊形A1A2…An,(n≥4),思考會有相應(yīng)的什么結(jié)論?請?zhí)岢鲆粋的命題,并給與正確解答.
注意:第(3)題中所提問題單獨(dú)給分,解答也單獨(dú)給分.本題按照所提問題的難度分層給分,解答也相應(yīng)給分,如果同時提出兩個問題,則就高不就低,解答也相同處理.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量a=(1,2),b=(0,1),設(shè)uakb,v=2ab,若uv,則實(shí)數(shù)k的值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)設(shè)u、v為實(shí)數(shù),證明:u2+v2數(shù)學(xué)公式;(2)請先閱讀下列材料,然后根據(jù)要求回答問題.
材料:已知△LMN內(nèi)接于邊長為1的正三角形ABC,求證:△LMN中至少有一邊的長不小于數(shù)學(xué)公式
證明:線段AN、AL、BL、BM、CM、CN的長分別設(shè)為a1、a2、b1、b2、c1、c2,設(shè)LN、LM、MN的長為x、y、z,
x2=a12+a22-2a1a2cos60°=a12+a22-a1a2
同理:y2=b12+b22-b1b2,z2=c12+c22-c1c2,
x2+y2+z2=a12+a22+b12+b22+c12+c22-a1a2-b1b2-c1c2

請利用(1)的結(jié)論,把證明過程補(bǔ)充完整;
(3)已知n邊形A1′A2′A3′…An′內(nèi)接于邊長為1的正n邊形A1A2…An,(n≥4),思考會有相應(yīng)的什么結(jié)論?請?zhí)岢鲆粋的命題,并給與正確解答.
注意:第(3)題中所提問題單獨(dú)給分,解答也單獨(dú)給分.本題按照所提問題的難度分層給分,解答也相應(yīng)給分,如果同時提出兩個問題,則就高不就低,解答也相同處理.

查看答案和解析>>

同步練習(xí)冊答案