【題目】如圖,在四棱錐中,底面是平行四邊形,,平面底面,且,,分別為,的中點(diǎn).
(1)求證:平面;
(2)求證:平面平面;
(3)求三棱錐的體積.
【答案】(1)證明見解析(2)證明見解析(3)
【解析】
(1)連接.因?yàn)榈酌?/span>是平行四邊形,則是的中點(diǎn),又因是的中點(diǎn),則有,然后利用線面平行的判定定理證明.
(2)在中,因?yàn)?/span>,則,有.,再根據(jù)側(cè)面底面,可得平面,再利用面面垂直的判定定理證明.
(3)取中點(diǎn)為,連接.根據(jù),則 ,由側(cè)面底面,則平面,即點(diǎn)P到面ABCD的距離為,然后根據(jù)等體積法求解.
(1)如圖,
連接.因?yàn)榈酌?/span>是平行四邊形,且是的中點(diǎn),所以也是的中點(diǎn).又因是的中點(diǎn),
所以.因?yàn)?/span>平面,平面,
所以平面.
(2)在中,因?yàn)?/span>,
所以,則.
又因?yàn)閭?cè)面底面,交線為,而平面,
所以平面.
因?yàn)?/span>平面,
所以平面平面.
(3)取中點(diǎn)為,連接.因?yàn)?/span>,為的中點(diǎn),
所以,
又因?yàn)閭?cè)面底面,交線為,
所以平面.
因?yàn)?/span>,,
所以,
所以.
所以,所以三棱錐的體積
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,設(shè),與所成的角是,繞直線將旋轉(zhuǎn)至,則在所有旋轉(zhuǎn)過程中,關(guān)于與所成的角的說法正確的是( )
A.當(dāng)時(shí),B.當(dāng)時(shí),
C.當(dāng)時(shí),D.當(dāng)時(shí),
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在底面為菱形的四棱錐P-ABCD中,平面平面ABCD,為等腰直角三角形,,,點(diǎn)E,F分別為BC,PD的中點(diǎn),直線PC與平面AEF交于點(diǎn)Q.
(1)若平面平面,求證:.
(2)求直線AQ與平面PCD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心為原點(diǎn),左焦點(diǎn)為,離心率為,不與坐標(biāo)軸垂直的直線與橢圓交于兩點(diǎn).
(1)若為線段的中點(diǎn),求直線的方程.
(2)求點(diǎn)是直線上一點(diǎn),點(diǎn)在橢圓上,且滿足,設(shè)直線與直線的斜率分別為,問:是否為定值?若是,請(qǐng)求出的值;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某超市在節(jié)日期間進(jìn)行有獎(jiǎng)促銷,凡在該超市購物滿400元的顧客,將獲得一次摸獎(jiǎng)機(jī)會(huì),規(guī)則如下:獎(jiǎng)盒中放有除顏色外完全相同的1個(gè)紅球,1個(gè)黃球,1個(gè)白球和1個(gè)黑球顧客不放回的每次摸出1個(gè)球,若摸到黑球則停止摸獎(jiǎng),否則就繼續(xù)摸球規(guī)定摸到紅球獎(jiǎng)勵(lì)20元,摸到白球或黃球獎(jiǎng)勵(lì)10元,摸到黑球不獎(jiǎng)勵(lì)
(1)求1名顧客摸球2次停止摸獎(jiǎng)的概率:
(2)記為1名顧客5次摸獎(jiǎng)獲得的獎(jiǎng)金數(shù)額,求隨機(jī)變量的分布列和數(shù)學(xué)期望
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校在一次期末數(shù)學(xué)測試中,為統(tǒng)計(jì)學(xué)生的考試情況,從學(xué)校的2000名學(xué)生中隨機(jī)抽取50名學(xué)生的考試成績,被測學(xué)生成績?nèi)拷橛?5分到145分之間(滿分150分),將統(tǒng)計(jì)結(jié)果按如下方式分成八組:第一組,,第二組,,第八組,,如圖是按上述分組方法得到的頻率分布直方圖的一部分.
(1)求第七組的頻率,并完成頻率分布直方圖;
(2)用樣本數(shù)據(jù)估計(jì)該校的2000名學(xué)生這次考試成績的平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表該組數(shù)據(jù)平均值);
(3)若從樣本成績屬于第六組和第八組的所有學(xué)生中隨機(jī)抽取2名,求他們的分差的絕對(duì)值小于10分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,曲線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為,設(shè)與交于、兩點(diǎn),中點(diǎn)為,的垂直平分線交于、.以為坐標(biāo)原點(diǎn),極軸為軸的正半軸建立直角坐標(biāo)系.
(1)求的直角坐標(biāo)方程與點(diǎn)的直角坐標(biāo);
(2)求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com