若點在以點為焦點的拋物線上,則等于__________

 

【答案】

4

【解析】

試題分析:欲求|PF|,根據(jù)拋物線的定義,即求P(3,m)到準線x=-1的距離,從而求得|PF|即可.解:拋物線為y2=4x,準線為x=-1,∴|PF|為P(3,m)到準線x=-1的距離,即為4.故填寫4.

考點:橢圓的參數(shù)方程,拋物線

點評:本小題主要考查橢圓的參數(shù)方程、拋物線的簡單性質(zhì)等基礎(chǔ)知識,考查運算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2013-2014學年云南省部分名校高三12月聯(lián)考理科數(shù)學試卷(解析版) 題型:解答題

已知兩點,點在以、為焦點的橢圓上,且、、構(gòu)成等差數(shù)列.

(Ⅰ)求橢圓的方程;

(Ⅱ)如圖,動直線與橢圓有且僅有一個公共點,點是直線上的兩點,且,

. 求四邊形面積的最大值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年云南省部分名校高三12月聯(lián)考文科數(shù)學試卷(解析版) 題型:解答題

已知兩點,點在以、為焦點的橢圓上,且、、構(gòu)成等差數(shù)列.

(Ⅰ)求橢圓的方程;

(Ⅱ)如圖,動直線與橢圓有且僅有一個公共點,點是直線上的兩點,且,. 求四邊形面積的最大值.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年浙江省寧波市鄞州區(qū)高三5月適應(yīng)性考試理科數(shù)學試卷(解析版) 題型:解答題

已知兩點,點在以、為焦點的橢圓上,且 構(gòu)成等差數(shù)列.

(1)求橢圓的方程;

(2)如圖,動直線與橢圓有且僅有一個公共點,點是直線上的兩點,且,. 求四邊形面積的最大值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江西新余第一中學高三第七次模擬考試理科數(shù)學試卷(解析版) 題型:解答題

已知兩點,點在以、為焦點的橢圓上,且、構(gòu)成等差數(shù)列.

(1)求橢圓的方程;

(2)如圖7,動直線與橢圓有且僅有一個公共點,點是直線上的兩點,且,. 求四邊形面積的最大值.

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

 已知兩點,點在以、為焦點的橢圓上,且、構(gòu)成等差數(shù)列.

(Ⅰ)求橢圓的方程;

(Ⅱ)如圖,動直線與橢圓有且僅有一個公共點,

是直線上的兩點,且,

求四邊形面積的最大值.

查看答案和解析>>

同步練習冊答案