求圓心在直線2x+y=0上,并且經(jīng)過點(diǎn)A(2,-1)與直線x+y=1相切的圓的方程.
考點(diǎn):圓的標(biāo)準(zhǔn)方程
專題:直線與圓
分析:由圓心直線y=-2x設(shè)出圓心的坐標(biāo)為(a,-2a),利用兩點(diǎn)間的距離公式表示出圓心到A的距離即為圓的半徑,根據(jù)圓心和半徑寫出圓的標(biāo)準(zhǔn)方程即可.
解答: 解:設(shè)所求圓心坐標(biāo)為(a,-2a),
由條件得
(a-2)2+(-2a+1)2
=
|a-2a-1|
2
,
化簡得a2-2a+1=0,
∴a=1,
∴圓心為(1,-2),
半徑r=
(1-2)2+(-2+1)2
=
2
,
∴所求圓方程為(x-1)2+(y+2)2=2.
點(diǎn)評(píng):本題主要考查圓的方程的求解,考查了直線與圓的位置關(guān)系,涉及的知識(shí)有兩點(diǎn)間的距離公式,點(diǎn)到直線的距離公式,圓的標(biāo)準(zhǔn)方程.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點(diǎn)D,E分別在△ABC的邊BC,AC上,線段AD,BE相交于點(diǎn)F,則“F為△ABC的重心”是“
AF
FD
=
BF
FE
=2”的(  )
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=|x-1|+|x+1|.
(1)解不等式f(x)≥3;
(2)若f(x)≥a-1的解集為R,求a取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)在公差為d的等差數(shù)列{an}中,已知a1=10,且a1,2a2+2,5a3成等比數(shù)列.求d,an;     
(2)已知等差數(shù)列{bn}的前n項(xiàng)和為Sn,b5=5,S5=15,則數(shù)列{
1
bnbn+1
}100項(xiàng)和為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足f(1)=1,且對(duì)任意x∈R都有f′(x)
1
2
,則不等式f(x)>
x+1
2
的解集為(  )
A、(1,2)
B、(-∞,1)
C、(1,+∞)
D、(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
=(a,b,c),向量
b
=(x,y,z),|
a
|=5,|
b
|=6,
a
b
=30,則
a+b+c
x+y+z
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=4x-
1
2
-a•2x+
27
2
在區(qū)間[0,2]上的最大值為9,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,AB=2,AD=
3
,P是AB的中點(diǎn),該矩形有一內(nèi)接Rt△PQR,P為直角頂點(diǎn),Q、R分別落在線段BC和線段AD上,記Rt△PQR的面積為S.
(Ⅰ)設(shè)∠BPQ為α,將S表示成α的函數(shù)關(guān)系式,并求S的最大值;
(Ⅱ)設(shè)BQ=x,將S表示成x的函數(shù)關(guān)系式.并求S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線2ax-by+2=0(a>0,b>0)被圓x2+y2+2x-4y+1=0截得的弦長為4,則
1
a
+
4
b
 的最小值是
 

查看答案和解析>>

同步練習(xí)冊答案