已知矩陣A-1 =,B-1 =,則 (AB)-1 =   ;

試題分析:設(shè)A= ,則可知=,可知得到A=,同理可知B=,則可知(AB)-1 =
點(diǎn)評(píng):利用矩陣的乘法法則及逆矩陣的求解,即可得到答案.屬于基礎(chǔ)題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)是由個(gè)實(shí)數(shù)組成的列的數(shù)表,如果某一行(或某一列)各數(shù)之和為負(fù)數(shù),則改變?cè)撔校ɑ蛟摿校┲兴袛?shù)的符號(hào),稱為一次“操作”.
(1)數(shù)表如表1所示,若經(jīng)過兩“操”,使得到的數(shù)表每行的各數(shù)之和與每列的各數(shù)之和均為非負(fù)實(shí)數(shù),請(qǐng)寫出每次“操作”后所得的數(shù)表(寫出一種方法即可);表1
1
2
3


1
0
1

(2)數(shù)表如表2所示,若必須經(jīng)過兩次“操作”,才可使得到的數(shù)表每行的各數(shù)之和與每列的各數(shù)之和均為非負(fù)整數(shù),求整數(shù)的所有可能值;表2

(3)對(duì)由個(gè)實(shí)數(shù)組成的列的任意一個(gè)數(shù)表,能否經(jīng)過有限次“操作”以后,使得到的數(shù)表每行的各數(shù)之和與每列的各數(shù)之和均為非負(fù)實(shí)數(shù)?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知在一個(gè)2×2矩陣M的變換作用下,點(diǎn)A(1,2)變成了點(diǎn)A'(4,5),點(diǎn)B(3,-1)變成了點(diǎn)B'(5,1).
(1)求2×2矩陣M.
(2)若在2×2矩陣M的變換作用下,點(diǎn)C(x,0)變成了點(diǎn)C'(4,y),求x,y.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知,則cos2α=        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知矩陣,A的一個(gè)特征值,屬于λ的特征向量是,求矩陣A與其逆矩陣.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知矩陣A=有一個(gè)屬于特征值1的特征向量.
(Ⅰ) 求矩陣A
(Ⅱ) 矩陣B=,點(diǎn)O(0,0),M(2,-1),N(0,2),求在矩陣AB的對(duì)應(yīng)變換作用下所得到的的面積. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若復(fù)數(shù)滿足,則的值為___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知二階矩陣M屬于特征值3的一個(gè)特征向量為,并且矩陣對(duì)應(yīng)的變換將點(diǎn)變成點(diǎn),求出矩陣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
(1)(矩陣與變換)已知二階矩陣
(Ⅰ)求矩陣逆矩陣;
(Ⅱ)設(shè)向量,求
(2)(坐標(biāo)系與參數(shù)方程)
已知曲線的參數(shù)方程為是參數(shù)),曲線的極坐標(biāo)方程為
(Ⅰ)求曲線的普通方程和曲線的平面直角坐標(biāo)方程
(Ⅱ)設(shè)曲線和曲線相交于兩點(diǎn),求弦長(zhǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案