已知函數(shù) (a>0,且a≠1),=.
(1)函數(shù)的圖象恒過定點A,求A點坐標;
(2)若函數(shù)的圖像過點(2,),證明:函數(shù)在(1,2)上有唯一的零點.
(1)
(2)先利用已知條件求出a,在利用單調(diào)性和零點存在定理即可證明
解析試題分析:(1)因為對數(shù)函數(shù)恒過頂點(1,0),
所以令所以過頂點 5分
(2)∵
∴代入計算可得a=2 7分
∴
上的增函數(shù)和減函數(shù)
∴
∴ 10分
又(1,2)
∴上至多有一個零點. 12分
而
∴函數(shù)(1,2) 16分
考點:本小題主要考查對數(shù)函數(shù)過定點和函數(shù)的單調(diào)性以及零點存在定理的應用.
點評:指數(shù)函數(shù)和對數(shù)函數(shù)都過定點,這條性質(zhì)要靈活應用;利用函數(shù)的零點存在定理時要注意它只能判斷有零點,不能判斷零點的個數(shù).
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)在區(qū)間上的值域為
(1)求的值;
(2)若關于的函數(shù)在區(qū)間上為單調(diào)函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
①當時,求函數(shù)在上的最大值和最小值;
②討論函數(shù)的單調(diào)性;
③若函數(shù)在處取得極值,不等式對恒成立,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1)若為定義域上的單調(diào)函數(shù),求實數(shù)m的取值范圍;
(2)當m=-1時,求函數(shù)的最大值;
(3)當,時,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)(a>1).
(1)判斷函數(shù)f (x)的奇偶性;
(2)求f (x)的值域;
(3)證明f (x)在(-∞,+∞)上是增函數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)f(x)=。
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性,并證明;
(3)判斷函數(shù)f(x)在定義域上的單調(diào)性,并用定義證明。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com