【題目】已知橢圓的左、右焦點(diǎn)為,離心率為,點(diǎn)在橢圓上,且的面積的最大值為.

(1)求橢圓的方程;

(2)已知直線與橢圓交于不同的兩點(diǎn),若在軸上存在點(diǎn),使得,求實(shí)數(shù)的取值范圍.

【答案】(1) ;(2).

【解析】

(1)根據(jù)離心率得到,由的面積的最大值為得到,再結(jié)合橢圓中求出參數(shù)的值后可得方程.(2)將直線方程代入橢圓方程消去y得到關(guān)于x的二次方程,結(jié)合根據(jù)系數(shù)的關(guān)系求出線段的中點(diǎn)的坐標(biāo),由,進(jìn)而有,并由此得到,最后根據(jù)基本不等式得到所求范圍.

(1)由題意得,解得

∴橢圓的方程為

(2)由消去y整理得,

設(shè),線段的中點(diǎn)為,

,

∵在軸上存在點(diǎn),使得,

,

,即,

,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立.

,故

∴實(shí)數(shù)的取值范圍為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年春節(jié)檔有多部優(yōu)秀電影上映,其中《流浪地球》是比較火的一部.某影評(píng)網(wǎng)站統(tǒng)計(jì)了100名觀眾對(duì)《流浪地球》的評(píng)分情況,得到如下表格:

評(píng)價(jià)等級(jí)

★★

★★★

★★★★

★★★★★

分?jǐn)?shù)

020

2140

4160

6180

81100

人數(shù)

5

2

12

6

75

(1)根據(jù)以上評(píng)分情況,試估計(jì)觀眾對(duì)《流浪地球》的評(píng)價(jià)在四星以上(包括四星)的頻率;

(2)以表中各評(píng)價(jià)等級(jí)對(duì)應(yīng)的頻率作為各評(píng)價(jià)等級(jí)對(duì)應(yīng)的概率,假設(shè)每個(gè)觀眾的評(píng)分結(jié)果相互獨(dú)立.

(i)若從全國所有觀眾中隨機(jī)選取3名,求恰有2名評(píng)價(jià)為五星1名評(píng)價(jià)為一星的概率;

(ii)若從全國所有觀眾中隨機(jī)選取16名,記評(píng)價(jià)為五星的人數(shù)為X,求X的方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐中,底面為菱形,平面,分別是、上的中點(diǎn),直線與平面所成角的正弦值為點(diǎn)上移動(dòng).

(Ⅰ)證明:無論點(diǎn)上如何移動(dòng),都有平面平面;

(Ⅱ)求點(diǎn)恰為的中點(diǎn)時(shí),二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某地區(qū)足球特色學(xué)校的發(fā)展?fàn)顩r,某調(diào)查機(jī)構(gòu)得到如下統(tǒng)計(jì)數(shù)據(jù):

年份x

2014

2015

2016

2017

2018

足球特色學(xué)校y(百個(gè))

0.30

0.60

1.00

1.40

1.70

1)根據(jù)上表數(shù)據(jù),計(jì)算yx的相關(guān)系數(shù)r,并說明yx的線性相關(guān)性強(qiáng)弱(已知:則認(rèn)為線性相關(guān)性很強(qiáng);,則認(rèn)為線性相關(guān)性一般,,則認(rèn)為yx線性相關(guān)性較弱)

2)求yx的線性回歸方程,并預(yù)測該地區(qū)2019年足球特色學(xué)校的個(gè)數(shù)(精確到個(gè)位)

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過直線2x+y+4=0和圓x2+y2+2x4y+1=0的交點(diǎn),且面積最小的圓方程為(

A.(x+)2+(y+)2=B.(x)2+(y)2=

C.(x)2+(y+)2=D.(x+)2+(y)2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求a

(2)證明:存在唯一的極大值點(diǎn),且.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為,為參數(shù),在以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為

求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

若射線l與曲線的交點(diǎn)分別為A,B異于原點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下邊的折線圖給出的是甲、乙兩只股票在某年中每月的收盤價(jià)格,已知股票甲的極差是6.88元,標(biāo)準(zhǔn)差為2.04元;股票乙的極差為27.47元,標(biāo)準(zhǔn)差為9.63元,根據(jù)這兩只股票在這一年中的波動(dòng)程度,給出下列結(jié)論:①股票甲在這一年中波動(dòng)相對(duì)較小,表現(xiàn)的更加穩(wěn)定;②購買股票乙風(fēng)險(xiǎn)高但可能獲得高回報(bào);③股票甲的走勢相對(duì)平穩(wěn),股票乙的股價(jià)波動(dòng)較大;④兩只般票在全年都處于上升趨勢.其中正確結(jié)論的個(gè)數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某臍橙種植基地記錄了10棵臍橙樹在未使用新技術(shù)的年產(chǎn)量(單位:)和使用了新技術(shù)后的年產(chǎn)量的數(shù)據(jù)變化,得到表格如下:

未使用新技術(shù)的10棵臍橙樹的年產(chǎn)量

第一棵

第二棵

第三棵

第四棵

第五棵

第六棵

第七棵

第八棵

第九棵

第十棵

年產(chǎn)量

30

32

30

40

40

35

36

45

42

30

使用了新技術(shù)后的10棵臍橙樹的年產(chǎn)量

第一棵

第二棵

第三棵

第四棵

第五棵

第六棵

第七棵

第八棵

第九棵

第十棵

年產(chǎn)量

40

40

35

50

55

45

42

50

51

42

已知該基地共有20畝地,每畝地有50棵臍橙樹.

(1)估計(jì)該基地使用了新技術(shù)后,平均1棵臍橙樹的產(chǎn)量;

(2)估計(jì)該基地使用了新技術(shù)后,臍橙年總產(chǎn)量比未使用新技術(shù)將增產(chǎn)多少?

(3)由于受市場影響,導(dǎo)致使用新技術(shù)后臍橙的售價(jià)由原來(未使用新技術(shù)時(shí))的每千克10元降為每千克9元,試估計(jì)該基地使用新技術(shù)后臍橙年總收入比原來增加的百分?jǐn)?shù).

查看答案和解析>>

同步練習(xí)冊答案