精英家教網 > 高中數學 > 題目詳情
一質點沿直線運動,如果由始點起經過t秒后的位移為s=
1
3
t3-3t2+8t,那么速度為零的時刻是( 。
分析:位移對時間求導數即是速度,求出位移的導數令其等于零解之.
解答:解:∵s=
1
3
t3-3t2+8t,
∴v=s′(t)=t2-6t+8,
令v=0得,t2-6t+8=0,t1=4或t2=2.
故選D.
點評:本題考查導數的幾何意義,考查學生的計算能力,屬容易題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

一質點沿直線運動,如果由始點起經過t秒后的位移為s=
1
3
t3-
3
2
t2+2t,那么速度為零的時刻是( 。
A、0秒B、1秒末
C、2秒末D、1秒末和2秒末

查看答案和解析>>

科目:高中數學 來源: 題型:

有以下五個命題
①設a>0,f(x)=ax2+bx+c,曲線y=f(x)在點P(x0,f(x0))處切線的傾斜角的取值范圍為[0,
π
4
],則點P到曲線y=f(x)對稱軸距離的取值范圍為[0,
1
2a
];
②一質點沿直線運動,如果由始點起經過t稱后的位移為s=
1
3
t3-
3
2
t2+2t
,那么速度為零的時刻只有1秒末;
③若函數f(x)=loga(x3-ax)(a>0,且a≠1)在區(qū)間(-
1
2
,0)
內單調遞增,則a的取值范圍是[
3
4
,1)
;
④定義在R上的偶函數f(x),滿足f(x+1)=-f(x),則f(x)的圖象關于x=1對稱;
⑤函數y=f(x-2)和y=f(2-x)的圖象關于直線x=2對稱.其中正確的有
 

查看答案和解析>>

科目:高中數學 來源: 題型:

一質點沿直線運動,如果由始點起經過t秒后的位移為s=2t+t-5,那么在2秒末時刻的瞬時速度為( 。
A、4ln2+1B、2ln2+1C、4ln2D、2ln2

查看答案和解析>>

科目:高中數學 來源:2013屆廣東省梅州市高二第二學期3月月考理科數學試卷 題型:選擇題

一質點沿直線運動,如果由始點起經過t秒后的位移為,那么

速度為零的時刻是

A.1秒         B.1秒末和2秒末   C.4秒末          D.2秒末和4秒末

 

查看答案和解析>>

同步練習冊答案