【題目】如圖, 是平面四邊形的對(duì)角線(xiàn), , ,且.現(xiàn)在沿所在的直線(xiàn)把折起來(lái),使平面平面,如圖.

(1)求證: 平面;

(2)求點(diǎn)到平面的距離.

【答案】(1)見(jiàn)解析;(2).

【解析】試題分析:(1)由平面平面,平面 平面,且平面,且,根據(jù)線(xiàn)面垂直的判定定理可得平面;(2)取的中點(diǎn),連.由,可得,又平面,所以,又 ,所以平面,因此就是點(diǎn)到平面的距離,在中, ,所以.

試題解析:(1)證明:因?yàn)槠矫?/span> 平面

平面平面 ,

平面,且

所以平面.

(2)取的中點(diǎn),連.因?yàn)?/span>,所以,

平面,所以,

,

所以平面

所以就是點(diǎn)到平面的距離,

中, , ,所以.

所以是點(diǎn)到平面的距離是 .

【方法點(diǎn)晴】本題主要考查、線(xiàn)面垂直的判定定理及面面垂直的性質(zhì)定理,屬于中檔題. 解答空間幾何體中垂直關(guān)系時(shí),一般要根據(jù)已知條件把空間中的線(xiàn)線(xiàn)、線(xiàn)面、面面之間垂直關(guān)系進(jìn)行轉(zhuǎn)化,轉(zhuǎn)化時(shí)要正確運(yùn)用有關(guān)的定理,找出足夠的條件進(jìn)行推理;證明直線(xiàn)和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推論;(3)利用面面平行的性質(zhì);(4)利用面面垂直的性質(zhì),當(dāng)兩個(gè)平面垂直時(shí),在一個(gè)平面內(nèi)垂直于交線(xiàn)的直線(xiàn)垂直于另一個(gè)平面.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某社區(qū)居民的家庭年收入與年支出的關(guān)系,隨機(jī)調(diào)查了該社區(qū)5戶(hù)家庭,得到如下統(tǒng)計(jì)數(shù)據(jù)表:

收入x(萬(wàn)元)

8.2

8.6

10.0

11.3

11.9

支出y(萬(wàn)元)

6.2

7.5

8.0

8.5

9.8

根據(jù)上表可得回歸直線(xiàn)方程 ,其中 = ,據(jù)此估計(jì),該社區(qū)一戶(hù)居民年收入為15萬(wàn)元家庭的年支出為萬(wàn)元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在正方體ABCD﹣A1B1C1D1中,E、F分別是棱DD1、C1D1的中點(diǎn).
(Ⅰ)證明:平面ADC1B1⊥平面A1BE;
(Ⅱ)證明:B1F∥平面A1BE;
(Ⅲ)若正方體棱長(zhǎng)為1,求四面體A1﹣B1BE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知過(guò)點(diǎn)(0,1)的直線(xiàn)與圓x2+y2=4相交于A、B兩點(diǎn),若 ,則點(diǎn)P的軌跡方程是( )
A.
B.x2+(y﹣1)2=1
C.
D.x2+(y﹣1)2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC的頂點(diǎn)A(6,1),AB邊上的中線(xiàn)CM所在直線(xiàn)方程為2x﹣y﹣7=0,AC邊上的高BH所在直線(xiàn)方程為x﹣2y﹣6=0.
(1)求點(diǎn)C的坐標(biāo);
(2)求直線(xiàn)BC的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 上有最大值9,最小值4.

(1)求實(shí)數(shù)的值;

(2)若不等式上恒成立,求實(shí)數(shù)的取值范圍;

(3)若方程有三個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(1)設(shè) ,是偶函數(shù),求實(shí)數(shù)的值;

(2)設(shè)求函數(shù)在區(qū)間上的值域;

(3)若不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A是拋物線(xiàn)M:y2=2px(p>0)與圓C:x2+(y﹣4)2=a2在第一象限的公共點(diǎn),且點(diǎn)A到拋物線(xiàn)M焦點(diǎn)F的距離為a,若拋物線(xiàn)M上一動(dòng)點(diǎn)到其準(zhǔn)線(xiàn)與到點(diǎn)C的距離之和的最小值為2a,O為坐標(biāo)原點(diǎn),則直線(xiàn)OA被圓C所截得的弦長(zhǎng)為( )
A.2
B.2
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)正三棱錐A﹣BCD(底面是正三角形,頂點(diǎn)在底面的射影為底面中心)的所有頂點(diǎn)都在球O的球面上,BC=2,E,F(xiàn)分別是AB,BC的中點(diǎn),EF⊥DE,則球O的表面積為( )
A.
B.6π
C.8π
D.12π

查看答案和解析>>

同步練習(xí)冊(cè)答案