某工程機(jī)械廠根據(jù)市場(chǎng)要求,計(jì)劃生產(chǎn)A、B兩種型號(hào)的大型挖掘機(jī)共100臺(tái),該廠所籌生產(chǎn)資金不少于22400萬元,但不超過22500萬元,且所籌資金全部用于生產(chǎn)這兩種型號(hào)的挖掘機(jī),所生產(chǎn)的這兩種型號(hào)的挖掘機(jī)可全部售出,此兩種型號(hào)挖掘機(jī)的生產(chǎn)成本和售價(jià)如下表所示:
型號(hào)
A
B
成本(萬元/臺(tái))
200
240
售價(jià)(萬元/臺(tái))
250
300
(1該廠對(duì)這兩種型號(hào)挖掘機(jī)有幾種生產(chǎn)方案?
(2)該廠如何生產(chǎn)獲得最大利潤(rùn)?
(3)根據(jù)市場(chǎng)調(diào)查,每臺(tái)B型挖掘機(jī)的售價(jià)不會(huì)改變,每臺(tái)A型挖掘機(jī)的售價(jià)將會(huì)提高萬元(>0),該廠如何生產(chǎn)可以獲得最大利潤(rùn)?(注:利潤(rùn)=售價(jià)-成本)
(1)①A型38臺(tái),B型62臺(tái);
②A型39臺(tái),B型61臺(tái);
③A型40臺(tái),B型60臺(tái).
(2)生產(chǎn)A型38臺(tái),B型62臺(tái)時(shí),獲得最大利潤(rùn).
(3)當(dāng)m=10時(shí),m-10=0則三種生產(chǎn)方案獲得利潤(rùn)相等;
當(dāng)m>10,則x=40時(shí),W最大,即生產(chǎn)A型40臺(tái),B型60臺(tái)

試題分析:解:(1)設(shè)生產(chǎn)A型挖掘機(jī)x臺(tái),則B型挖掘機(jī)100-x臺(tái),  1分
由題意得22400≤200x+240(100-x)≤22500,
解得37.5≤x≤40.              3分
∵x取非負(fù)整數(shù),
∴x為38,39,40.
∴有三種生產(chǎn)方案
①A型38臺(tái),B型62臺(tái);
②A型39臺(tái),B型61臺(tái);
③A型40臺(tái),B型60臺(tái).               5分
(2)設(shè)獲得利潤(rùn)W(萬元),由題意得W=50x+60(100-x)=6000-10x
∴當(dāng)x=38時(shí),W最大=5620(萬元),
即生產(chǎn)A型38臺(tái),B型62臺(tái)時(shí),獲得最大利潤(rùn).      7分
(3)由題意得W=(50+m)x+60(100-x)=6000+(m-10)x
∴當(dāng)0<m<10,則x=38時(shí),W最大,即生產(chǎn)A型38臺(tái),B型62臺(tái);
當(dāng)m=10時(shí),m-10=0則三種生產(chǎn)方案獲得利潤(rùn)相等;
當(dāng)m>10,則x=40時(shí),W最大,即生產(chǎn)A型40臺(tái),B型60臺(tái).   10分
點(diǎn)評(píng):解決的關(guān)鍵是對(duì)于已知的變量來表示出代數(shù)式,然后借助于函數(shù)的性質(zhì)來求解最值,屬于基礎(chǔ)題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

動(dòng)點(diǎn)滿足,點(diǎn)Q(5,4)則的最小值是       。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若實(shí)數(shù)滿足,且,則的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,陰影部分(含邊界)所表示的平面區(qū)域?qū)?yīng)的約束條件是
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)平面區(qū)域D是由雙曲線的兩條漸近線和直線所圍成三角形的邊界及內(nèi)部.當(dāng)時(shí),的最大值為(    ).
A.12B.10C.8D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知滿足約束條件,則的最大值是        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若實(shí)數(shù)滿足不等式組  則的最大值是(     )
A.11B.23C.26D.30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知z="2x" +y,x,y滿足且z的最大值是最小值的4倍,則a的值是      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(diǎn)在圓上運(yùn)動(dòng),則的最大值與最小值為( )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案