滿足2sinx-1<0的角x的集合是( 。
A.{x|2kπ+
π
6
<x<2kπ+
6
,k∈Z}
B.{x|kπ+
π
6
<x<kπ+
6
,k∈Z}
C.:{x|2kπ-
6
<x<2kπ+
π
6
,k∈Z}
D.{x|
6
<x<kπ+
π
6
,k∈Z}
2sinx-1<0,化為:sinx<
1
2
,由三角函數(shù)的性質(zhì)可知,不等式的解集為:{x|2kπ-
6
<x<2kπ+
π
6
,k∈Z}

故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

將函數(shù)f(x)=2sin(2x-θ)-3的圖象F向右平移
π
6
,再向上平移3個(gè)單位,得到圖象F′,若F′的一條對(duì)稱軸方程是x=
π
4
,則θ的一個(gè)可能。ā 。
A.-
π
6
B.-
π
3
C.
π
2
D.
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)
(Ⅰ)求的最小正周期.   
(Ⅱ)若函數(shù)的圖像關(guān)于直線對(duì)稱,求當(dāng)時(shí)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=
sin2x+cos2x+1
2cosx

(1)求f(x)的定義域和值域;
(2)若x∈(-
π
4
π
4
),且f(x)=
3
2
5
,求cos2x
的值.
(3)若曲線f(x)在點(diǎn)P(x0,f(x0))(-
π
2
x0
π
2
)
處的切線平行直線y=
6
2
x
,求x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知x∈[0,2π],如果y=cosx是增函數(shù),且y=sinx是減函數(shù),那么(  )
A.0≤x≤
π
2
B.
π
2
≤x≤π
C.π≤x≤
2
D.
2
≤x≤2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)f(x)=(1-
1
x2
)sinx
的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

為了得到函數(shù)y=cos
1
3
x,只需要把y=cosx圖象上所有的點(diǎn)的( 。
A.橫坐標(biāo)伸長到原來的3倍,縱坐標(biāo)不變
B.橫坐標(biāo)縮小到原來的
1
3
倍,縱坐標(biāo)不變
C.縱坐標(biāo)伸長到原來的3倍,橫坐標(biāo)不變
D.縱坐標(biāo)縮小到原來的
1
3
倍,橫坐標(biāo)不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

要得到函數(shù)y=sin2x的圖象,只要將函數(shù)y=sin(2x-
π
4
)的圖象( 。
A.向左平移
π
4
單位
B.向右平移
π
4
單位
C.向左平移
π
8
單位
D.向右平移
π
8
單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如果,那么的最小值為
A.3B.4 C.5D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案