今有甲、乙兩個(gè)籃球隊(duì)進(jìn)行比賽,規(guī)定兩隊(duì)中有一隊(duì)勝4場(chǎng),則整個(gè)比賽宣告結(jié)束,假設(shè)甲、乙兩隊(duì)在每場(chǎng)比賽中獲勝的概率都是,并記需要比賽的場(chǎng)數(shù)為ξ.求:

(1)ξ大于5的概率;

(2)ξ的分布列和數(shù)學(xué)期望.

答案:
解析:

  解析:(1)依題意,可知ξ的可能取值最小為4,當(dāng)ξ=4時(shí),整個(gè)比賽只需比賽4場(chǎng)結(jié)束,這意味著甲連勝4場(chǎng),或乙連勝4場(chǎng),于是由互斥事件的概率計(jì)算公式,可得P=4)=;

  當(dāng)ξ=5時(shí),需要比賽5場(chǎng)整個(gè)比賽結(jié)束,意味著甲在第5場(chǎng)獲勝,前4場(chǎng)中有3場(chǎng)獲勝,或者乙在第5場(chǎng)獲勝,前4場(chǎng)中有3場(chǎng)獲勝,顯然這兩種情況是互斥的,

  于是P=5)=2[

  ∴P>5)=1-[P=4)+P=5)]=1-

  (2)∵ξ的可能值為4,5,6,7,由(1)得P=6)=,

  P=7)=,

  ∴ξ的分布列為

  ξ的數(shù)學(xué)期望為=4×


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

今有甲、乙兩個(gè)籃球隊(duì)進(jìn)行比賽,比賽采用7局4勝制.假設(shè)甲、乙兩隊(duì)在每場(chǎng)比賽中獲勝的概率都是
12
.并記需要比賽的場(chǎng)數(shù)為X.
(Ⅰ)求X大于5的概率;
(Ⅱ)求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:廣東省佛山一中2010-2011學(xué)年高二下學(xué)期期末考試數(shù)學(xué)(理) 題型:解答題

(14分)今有甲、乙兩個(gè)籃球隊(duì)進(jìn)行比賽,比賽采用7局4勝制.假設(shè)甲、乙兩隊(duì)在每場(chǎng)比賽中獲勝的概率都是.并記需要比賽的場(chǎng)數(shù)為ξ.
(Ⅰ)求ξ大于5的概率;(Ⅱ)求ξ的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:廣東省2012屆高二下學(xué)期期末考試數(shù)學(xué)(理) 題型:解答題

(14分)今有甲、乙兩個(gè)籃球隊(duì)進(jìn)行比賽,比賽采用7局4勝制.假設(shè)甲、乙兩隊(duì)在每場(chǎng)比賽中獲勝的概率都是.并記需要比賽的場(chǎng)數(shù)為ξ.

 

(Ⅰ)求ξ大于5的概率;(Ⅱ)求ξ的分布列與數(shù)學(xué)期望.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

今有甲、乙兩個(gè)籃球隊(duì)進(jìn)行比賽,比賽采用7局4勝制.假設(shè)甲、乙兩隊(duì)在每場(chǎng)比賽中獲勝的概率都是
1
2
.并記需要比賽的場(chǎng)數(shù)為X.
(Ⅰ)求X大于5的概率;
(Ⅱ)求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖北省荊州市江陵實(shí)驗(yàn)高中高二(上)綜合測(cè)試數(shù)學(xué)試卷(解析版) 題型:解答題

今有甲、乙兩個(gè)籃球隊(duì)進(jìn)行比賽,比賽采用7局4勝制.假設(shè)甲、乙兩隊(duì)在每場(chǎng)比賽中獲勝的概率都是.并記需要比賽的場(chǎng)數(shù)為X.
(Ⅰ)求X大于5的概率;
(Ⅱ)求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案