【題目】“微信運動”已成為當下熱門的健身方式,小王的微信朋友圈內也有大量好友參與了“微信運動”,他隨機選取了其中的人(男、女各人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:

步量

性別

0~2000

2001~5000

5001~8000

8001~10000

>10000

1

2

3

6

8

0

2

10

6

2

(1)已知某人一天的走路步數(shù)超過步被系統(tǒng)評定“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有以上的把握認為“評定類型”與“性別”有關?

積極型

懈怠型

總計

總計

附:,

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

(2)若小王以這位好友該日走路步數(shù)的頻率分布來估計其所有微信好友每日走路步數(shù)的概率分布,現(xiàn)從小王的所有微信好友中任選人,其中每日走路不超過步的有人,超過步的有人,設,求的分布列及數(shù)學期望.

【答案】(1)答案見解析;(2)答案見解析.

【解析】試題分析

(1)有條件中給出的數(shù)據(jù)可得列聯(lián)表,求得后根據(jù)臨界值表中的數(shù)據(jù)可得判斷.(2)由題意得從小王的微信好友中任選一人,其每日走路步數(shù)不超過步的概率為,超過步的概率為.然后判斷得到隨機變量的所有可能取值,分別求出概率后得到分布列,然后求得期望。

試題解析:

(1)由題意得列聯(lián)表為:

積極型

懈怠型

總計

14

6

20

8

12

20

總計

22

18

40

由表中數(shù)據(jù)可得

,

故沒有95%以上的把握認為認為“評定類型”與“性別”有關.

(2)由條件知,從小王的微信好友中任選一人,其每日走路步數(shù)不超過步的概率為,超過步的概率為

由題意得的所有可能取值為0,1,2.

,

,

故隨機變量的分布列為:

所以

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】ACBC,AC=BC=1,點P是△ABC內一點,則的取值范圍是( 。

A. (﹣,0) B. (0, C. (﹣ D. (﹣1,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

(1)當時,求函數(shù)在點處的切線方程.

(2)求函數(shù)的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有一容量為50的樣本,數(shù)據(jù)的分組以及各組的頻數(shù)如下:

[12.5,15.5),3;[15.5,18.5),8;[18.5,21.5),9;[21.5,24.5),11;[24.5,27.5),10;[27.5,30.5),5;[30.5,33.5],4.

(1)列出樣本的頻率分布表.

(2)畫出頻率分布直方圖.

(3)根據(jù)頻率分布表,估計數(shù)據(jù)落在[15.5,24.5)內的可能性約是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解人們對“延遲退休年齡政策”的態(tài)度,某部門從年齡在歲到歲的人群中隨機調查了人,并得到如圖所示的頻率分布直方圖,在這人中不支持“延遲退休年齡政策”的人數(shù)與年齡的統(tǒng)計結果如圖所示:

年齡

不支持“延遲退休年齡政策”的人數(shù)

(1)由頻率分布直方圖,估計這人年齡的平均數(shù);

(2)根據(jù)以上統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表,據(jù)此表,能否在犯錯誤的概率不超過的前提下,認為以歲為分界點的不同人群對“延遲退休年齡政策”的態(tài)度存在差異?

45歲以下

45歲以上

總計

不支持

支持

總計

附:

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解某班學生喜愛打籃球是否與性別有關,對本班50人進行了問卷調查得到了如下的列聯(lián)表:


喜愛打籃球

不喜愛打籃球

合計

男生


5


女生

10



合計



50

已知在全部50人中隨機抽取1人抽到喜愛打籃球的學生的概率為

1)請將上面的列聯(lián)表補充完整;

2)是否在犯錯誤的概率不超過0.5%的前提下認為喜愛打籃球與性別有關?說明你的理由.下面的臨界值表供參考:


0.15

0.10

0.05

0.025

0.010

0.005]

0.001


2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】圖是AB兩所學校藝術節(jié)期間收到的各類藝術作品的情況的統(tǒng)計圖:

A學校 B學校

1)從圖中能否看出哪所學校收到的水粉畫作品數(shù)量多?為什么?

2)已知A學校收到的剪紙作品比B學校的多20件,收到的書法作品比B學校的少100件,請問這兩所學校收到藝術作品的總數(shù)分別是多少件?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市為了了解校園安全教育系列活動的成效,對全市高中生進行一次安全意識測試,根據(jù)測試成績評定“合格”、“不合格”兩個等級,同時對相應等級進行量化,現(xiàn)隨機抽取部分高中生的答卷,統(tǒng)計結果如下,對應的頻率分布直方圖如圖所示.

等級

不合格

合格

得分

[2040

[40,60

[60,80

[80,100

頻數(shù)

12

48

24

1)求、的值;

2)估計該市高中生測試成績評定等級為“合格”的概率;

3)在抽取的答卷中,用分層抽樣的方法,從評定等級為“合格”和“不合格”的答卷中抽取5份,再從這5份答卷中任取2份,求恰有1份評定等級為“不合格”的概率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面四邊形中,都是等腰直角三角形且,正方形的邊.

(1)求證:平面

(2)求二面角的余弦值.

查看答案和解析>>

同步練習冊答案