【題目】的內(nèi)角的對邊分別為,已知

(1)求;

(2)若,求的面積.

【答案】(1);(2).

【解析】

(1)由正弦定理得 sinA=sinBcosC+sinCsinB,從而cosBsinC=sinCsinB,進而tanB=,由此能求出B.(2)利用余弦定理得a,由此能求出△ABC的面積.

(1)由abcosC+csinB及正弦定理,可得:sinA=sinBcosC+sinCsinB,①

又sinA=sin(π﹣BC)=sin(B+C)=sinBcosC+cosBsinC②,①②sinCsinB=cosBsinC,又三角形中,sinC≠0,所以sinB=cosB,B∈(0,π),所以B

(2)△ABC的面積為S由余弦定理,b2a2+c2﹣2accosB,得4=a2+c2,,c2=4c=2,所以△ABC的面積為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位員工人參加學(xué)雷鋒志愿活動,按年齡分組:第,第,,,,得到的頻率分布直方圖如圖所示.

1)下表是年齡的頻率分布表,求正整數(shù)的值;

區(qū)間






人數(shù)






2)現(xiàn)在要從年齡較小的第組中用分層抽樣的方法抽取人,年齡在第組抽取的員工的人數(shù)分別是多少?

3)在(2)的前提下,從這人中隨機抽取人參加社區(qū)宣傳交流活動,求至少有人年齡在第組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角△ABC中,AB⊥BC,D為BC邊上異于B、C的一點,以AB為直徑作⊙O,并分別交AC,AD于點E,F(xiàn).
(Ⅰ)證明:C,E,F(xiàn),D四點共圓;
(Ⅱ)若D為BC的中點,且AF=3,F(xiàn)D=1,求AE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市在對學(xué)生的綜合素質(zhì)評價中,將其測評結(jié)果分為“優(yōu)秀、合格、不合格”三個等級,其中不小于80分為“優(yōu)秀”,小于60分為“不合格”,其它為“合格”. 參考公式:K2= ,其中n=a+b+c+d.
臨界值表:

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

k0

2.072

2.706

3.841

5.024

6.635


(1)某校高一年級有男生500人,女生400人,為了解性別對該綜合素質(zhì)評價結(jié)果的影響,采用分層抽樣的方法從高一學(xué)生中抽取45名學(xué)生的綜合素質(zhì)評價結(jié)果,其各個等級的頻數(shù)統(tǒng)計如下表:

等級

優(yōu)秀

合格

不合格

男生(人)

15

x

5

女生(人)

15

3

y

根據(jù)表中統(tǒng)計的數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷是否有90%的把握認為“綜合素質(zhì)評價測評結(jié)果為優(yōu)秀與性別有關(guān)”?

優(yōu)秀

男生

女生

總計

非優(yōu)秀

總計


(2)以(1)中抽取的45名學(xué)生的綜合素質(zhì)評價等級的頻率作為全市各個評價等級發(fā)生的概率,且每名學(xué)生是否“優(yōu)秀”相互獨立,現(xiàn)從該市高一學(xué)生中隨機抽取3人. ①求所選3人中恰有2人綜合素質(zhì)評價為“優(yōu)秀”的概率;
②記X表示這3人中綜合素質(zhì)評價等級為“優(yōu)秀”的個數(shù),求X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方體中,點是棱上的一個動點,平面交棱于點給出下列命題:

①存在點,使得//平面;

對于任意的點,平面平面;

存在點,使得平面

④對于任意的點,四棱錐的體積均不變.

其中正確命題的序號是______.(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果直線y=kx+1與圓x2+y2+kx+my﹣4=0交于M、N兩點,且M、N關(guān)于直線x+y=0對稱,則不等式組:表示的平面區(qū)域的面積是(。
A.
B.
C.1
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,公園有一塊邊長為2的等邊ABC的邊角地,現(xiàn)修成草坪, 圖中DE把草坪分成面積相等的兩部分,D在AB上,E在AC上

(1)設(shè)AD=x(x≥0),DE=y,求用x表示y的函數(shù)關(guān)系式,并求函數(shù)的定義域;

(2)如果DE是灌溉水管,為節(jié)約成本,希望它最短,DE的位置應(yīng)在哪里?如果DE是參觀線路,則希望它最長,DE的位置又應(yīng)在哪里?請予證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知圓C1的參數(shù)方程為(t為參數(shù)).以坐標(biāo)原點O為極點,x軸的非負半軸為極軸建立極坐標(biāo)系,圓C2的極坐標(biāo)方程為ρ=4sinθ.

(1)寫出圓C1的極坐標(biāo)方程,并求圓C1與圓C2的公共弦的長度d;

(2)設(shè)射線θ=與圓C1異于極點的交點為A,與圓C2異于極點的交點為B,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓經(jīng)過點,并且直線平分圓.

)求圓的方程;

)若過點,且斜率為的直線與圓有兩個不同的交點.

)求實數(shù)的取值范圍;

)若,求的值.

查看答案和解析>>

同步練習(xí)冊答案